Usage | Returns |
---|---|
ImageCollection.count() | Image |
Argument | Type | Details |
---|---|---|
this: collection | ImageCollection | The image collection to reduce. |
Examples
Code Editor (JavaScript)
// Sentinel-2 image collection for July 2021 intersecting a point of interest. // Reflectance, cloud probability, and scene classification bands are selected. var col = ee.ImageCollection('COPERNICUS/S2_SR') .filterDate('2021-07-01', '2021-08-01') .filterBounds(ee.Geometry.Point(-122.373, 37.448)) .select('B.*|MSK_CLDPRB|SCL'); // Visualization parameters for reflectance RGB. var visRefl = { bands: ['B11', 'B8', 'B3'], min: 0, max: 4000 }; Map.setCenter(-122.373, 37.448, 9); Map.addLayer(col, visRefl, 'Collection reference', false); // Reduce the collection to a single image using a variety of methods. var mean = col.mean(); Map.addLayer(mean, visRefl, 'Mean (B11, B8, B3)'); var median = col.median(); Map.addLayer(median, visRefl, 'Median (B11, B8, B3)'); var min = col.min(); Map.addLayer(min, visRefl, 'Min (B11, B8, B3)'); var max = col.max(); Map.addLayer(max, visRefl, 'Max (B11, B8, B3)'); var sum = col.sum(); Map.addLayer(sum, {bands: ['MSK_CLDPRB'], min: 0, max: 500}, 'Sum (MSK_CLDPRB)'); var product = col.product(); Map.addLayer(product, {bands: ['MSK_CLDPRB'], min: 0, max: 1e10}, 'Product (MSK_CLDPRB)'); // ee.ImageCollection.mode returns the most common value. If multiple mode // values occur, the minimum mode value is returned. var mode = col.mode(); Map.addLayer(mode, {bands: ['SCL'], min: 1, max: 11}, 'Mode (pixel class)'); // ee.ImageCollection.count returns the frequency of valid observations. Here, // image pixels are masked based on cloud probability to add valid observation // variability to the collection. Note that pixels with no valid observations // are masked out of the returned image. var notCloudCol = col.map(function(img) { return img.updateMask(img.select('MSK_CLDPRB').lte(10)); }); var count = notCloudCol.count(); Map.addLayer(count, {min: 1, max: 5}, 'Count (not cloud observations)'); // ee.ImageCollection.mosaic composites images according to their position in // the collection (priority is last to first) and pixel mask status, where // invalid (mask value 0) pixels are filled by preceding valid (mask value >0) // pixels. var mosaic = notCloudCol.mosaic(); Map.addLayer(mosaic, visRefl, 'Mosaic (B11, B8, B3)');
import ee import geemap.core as geemap
Colab (Python)
# Sentinel-2 image collection for July 2021 intersecting a point of interest. # Reflectance, cloud probability, and scene classification bands are selected. col = ( ee.ImageCollection('COPERNICUS/S2_SR') .filterDate('2021-07-01', '2021-08-01') .filterBounds(ee.Geometry.Point(-122.373, 37.448)) .select('B.*|MSK_CLDPRB|SCL') ) # Visualization parameters for reflectance RGB. vis_refl = {'bands': ['B11', 'B8', 'B3'], 'min': 0, 'max': 4000} m = geemap.Map() m.set_center(-122.373, 37.448, 9) m.add_layer(col, vis_refl, 'Collection reference', False) # Reduce the collection to a single image using a variety of methods. mean = col.mean() m.add_layer(mean, vis_refl, 'Mean (B11, B8, B3)') median = col.median() m.add_layer(median, vis_refl, 'Median (B11, B8, B3)') min = col.min() m.add_layer(min, vis_refl, 'Min (B11, B8, B3)') max = col.max() m.add_layer(max, vis_refl, 'Max (B11, B8, B3)') sum = col.sum() m.add_layer( sum, {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 500}, 'Sum (MSK_CLDPRB)' ) product = col.product() m.add_layer( product, {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 1e10}, 'Product (MSK_CLDPRB)', ) # ee.ImageCollection.mode returns the most common value. If multiple mode # values occur, the minimum mode value is returned. mode = col.mode() m.add_layer( mode, {'bands': ['SCL'], 'min': 1, 'max': 11}, 'Mode (pixel class)' ) # ee.ImageCollection.count returns the frequency of valid observations. Here, # image pixels are masked based on cloud probability to add valid observation # variability to the collection. Note that pixels with no valid observations # are masked out of the returned image. not_cloud_col = col.map( lambda img: img.updateMask(img.select('MSK_CLDPRB').lte(10)) ) count = not_cloud_col.count() m.add_layer(count, {'min': 1, 'max': 5}, 'Count (not cloud observations)') # ee.ImageCollection.mosaic composites images according to their position in # the collection (priority is last to first) and pixel mask status, where # invalid (mask value 0) pixels are filled by preceding valid (mask value >0) # pixels. mosaic = not_cloud_col.mosaic() m.add_layer(mosaic, vis_refl, 'Mosaic (B11, B8, B3)') m