Send feedback
Export.classifier.toAsset
Stay organized with collections
Save and categorize content based on your preferences.
Creates a batch task to export an ee.Classifier as an Earth Engine asset.
Usage Returns Export.classifier.toAsset(classifier, description , assetId , priority )
Argument Type Details classifier
ComputedObject The classifier to export. description
String, optional A human-readable name of the task. Defaults to "myExportClassifierTask". assetId
String, optional The destination asset ID. priority
Number, optional The priority of the task within the project. Higher priority tasks are scheduled sooner. Must be an integer between 0 and 9999. Defaults to 100.
Examples
Code Editor (JavaScript)
// First gather the training data for a random forest classifier.
// Let's use MCD12Q1 yearly landcover for the labels.
var landcover = ee . ImageCollection ( 'MODIS/061/MCD12Q1' )
. filterDate ( '2022-01-01' , '2022-12-31' )
. first ()
. select ( 'LC_Type1' );
// A region of interest for training our classifier.
var region = ee . Geometry . BBox ( 17.33 , 36.07 , 26.13 , 43.28 );
// Training features will be based on a Landsat 8 composite.
var l8 = ee . ImageCollection ( 'LANDSAT/LC08/C02/T1' )
. filterBounds ( region )
. filterDate ( '2022-01-01' , '2023-01-01' );
// Draw the Landsat composite, visualizing true color bands.
var landsatComposite = ee . Algorithms . Landsat . simpleComposite ({
collection : l8 ,
asFloat : true
});
Map . addLayer ( landsatComposite , {
min : 0 ,
max : 0.3 ,
bands : [ 'B3' , 'B2' , 'B1' ]
}, 'Landsat composite' );
// Make a training dataset by sampling the stacked images.
var training = landcover . addBands ( landsatComposite ). sample ({
region : region ,
scale : 30 ,
// With export to Classifier we can bump this higher to say 10,000.
numPixels : 1000
});
var classifier = ee . Classifier . smileRandomForest ({
// We can also increase the number of trees higher to ~100 if needed.
numberOfTrees : 3
}). train ({ features : training , classProperty : 'LC_Type1' });
// Create an export classifier task to run.
var assetId = 'projects/<project-name>/assets/<asset-name>' ; // <> modify these
Export . classifier . toAsset ({
classifier : classifier ,
description : 'classifier_export' ,
assetId : assetId
});
// Load the classifier after the export finishes and visualize.
var savedClassifier = ee . Classifier . load ( assetId )
var landcoverPalette = '05450a,086a10,54a708,78d203,009900,c6b044,dcd159,' +
'dade48,fbff13,b6ff05,27ff87,c24f44,a5a5a5,ff6d4c,69fff8,f9ffa4,1c0dff' ;
var landcoverVisualization = {
palette : landcoverPalette ,
min : 0 ,
max : 16 ,
format : 'png'
};
Map . addLayer (
landsatComposite . classify ( savedClassifier ),
landcoverVisualization ,
'Upsampled landcover, saved' );
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# First gather the training data for a random forest classifier.
# Let's use MCD12Q1 yearly landcover for the labels.
landcover = ( ee . ImageCollection ( 'MODIS/061/MCD12Q1' )
. filterDate ( '2022-01-01' , '2022-12-31' )
. first ()
. select ( 'LC_Type1' ))
# A region of interest for training our classifier.
region = ee . Geometry . BBox ( 17.33 , 36.07 , 26.13 , 43.28 )
# Training features will be based on a Landsat 8 composite.
l8 = ( ee . ImageCollection ( 'LANDSAT/LC08/C02/T1' )
. filterBounds ( region )
. filterDate ( '2022-01-01' , '2023-01-01' ))
# Draw the Landsat composite, visualizing true color bands.
landsatComposite = ee . Algorithms . Landsat . simpleComposite (
collection = l8 , asFloat = True )
Map = geemap . Map ()
Map # Render the map in the notebook.
Map . addLayer ( landsatComposite , {
'min' : 0 ,
'max' : 0.3 ,
'bands' : [ 'B3' , 'B2' , 'B1' ]
}, 'Landsat composite' )
# Make a training dataset by sampling the stacked images.
training = landcover . addBands ( landsatComposite ) . sample (
region = region ,
scale = 30 ,
# With export to Classifier we can bump this higher to say 10,000.
numPixels = 1000
)
# We can also increase the number of trees higher to ~100 if needed.
classifier = ee . Classifier . smileRandomForest (
numberOfTrees = 3 ) . train ( features = training , classProperty = 'LC_Type1' )
# Create an export classifier task to run.
asset_id = 'projects/<project-name>/assets/<asset-name>' # <> modify these
ee . batch . Export . classifier . toAsset (
classifier = classifier ,
description = 'classifier_export' ,
assetId = asset_id
)
# Load the classifier after the export finishes and visualize.
savedClassifier = ee . Classifier . load ( asset_id )
landcover_palette = [
'05450a' , '086a10' , '54a708' , '78d203' , '009900' ,
'c6b044' , 'dcd159' , 'dade48' , 'fbff13' , 'b6ff05' ,
'27ff87' , 'c24f44' , 'a5a5a5' , 'ff6d4c' , '69fff8' ,
'f9ffa4' , '1c0dff' ]
landcoverVisualization = {
'palette' : landcover_palette ,
'min' : 0 ,
'max' : 16 ,
'format' : 'png'
}
Map . addLayer (
landsatComposite . classify ( savedClassifier ),
landcoverVisualization ,
'Upsampled landcover, saved' )
Send feedback
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-06-05 UTC.
Need to tell us more?
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-05 UTC."],[[["Exports an Earth Engine classifier as an asset for later use."],["Allows customization of the export task with description, asset ID, and priority settings."],["Provides code examples in JavaScript and Python demonstrating the export and subsequent use of the saved classifier."],["Utilizes a Landsat-based composite and MODIS landcover data for training the classifier in the examples."],["Enables efficient saving and loading of trained classifiers within the Earth Engine platform."]]],[]]