Send feedback
ee.FeatureCollection.kriging
Stay organized with collections
Save and categorize content based on your preferences.
Returns the results of sampling a Kriging estimator at each pixel.
Usage Returns FeatureCollection. kriging (propertyName, shape, range, sill, nugget, maxDistance , reducer )
Image
Argument Type Details this: collection
FeatureCollection Feature collection to use as source data for the estimation. propertyName
String Property to be estimated (must be numeric). shape
String Semivariogram shape (one of {exponential, gaussian, spherical}). range
Float Semivariogram range, in meters. sill
Float Semivariogram sill. nugget
Float Semivariogram nugget. maxDistance
Float, default: null Radius which determines which features are included in each pixel's computation, in meters. Defaults to the semivariogram's range. reducer
Reducer, default: null Reducer used to collapse the 'propertyName' value of overlapping points into a single value.
Examples
Code Editor (JavaScript)
/**
* This example generates an interpolated surface using kriging from a
* FeatureCollection of random points that simulates a table of air temperature
* at ocean weather buoys.
*/
// Average air temperature at 2m height for June, 2020.
var img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' )
. select ([ 'mean_2m_air_temperature' ], [ 'tmean' ]);
// Region of interest: South Pacific Ocean.
var roi = ee . Geometry . Polygon (
[[[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ]]], null , false );
// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img . sample (
{ region : roi , scale : 25000 , numPixels : 50 , geometries : true }); //250
// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc . kriging ({
propertyName : 'tmean' ,
shape : 'gaussian' ,
range : 2.8e6 ,
sill : 164 ,
nugget : 0.05 ,
maxDistance : 1.8e6 ,
reducer : ee . Reducer . mean ()
});
// Display the results on the map.
Map . setCenter ( - 137.47 , - 30.47 , 3 );
Map . addLayer ( tmeanImg , { min : 279 , max : 300 }, 'Temperature (K)' );
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.
# Average air temperature at 2m height for June, 2020.
img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' ) . select (
[ 'mean_2m_air_temperature' ], [ 'tmean' ]
)
# Region of interest: South Pacific Ocean.
roi = ee . Geometry . Polygon (
[[
[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ],
]],
None ,
False ,
)
# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img . sample ( region = roi , scale = 25000 , numPixels = 50 , geometries = True )
# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc . kriging (
propertyName = 'tmean' ,
shape = 'gaussian' ,
range = 2.8e6 ,
sill = 164 ,
nugget = 0.05 ,
maxDistance = 1.8e6 ,
reducer = ee . Reducer . mean (),
)
# Display the results on the map.
m = geemap . Map ()
m . set_center ( - 137.47 , - 30.47 , 3 )
m . add_layer (
tmean_img ,
{ 'min' : 279 , 'max' : 300 , 'min' : 279 , 'max' : 300 },
'Temperature (K)' ,
)
m
Send feedback
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
Need to tell us more?
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[[["`kriging()` interpolates values across a FeatureCollection using specified Kriging parameters to generate an Image."],["It estimates values for each pixel based on the spatial correlation of a numeric property within the input FeatureCollection."],["The interpolation process is guided by a semivariogram model defined by `shape`, `range`, `sill`, and `nugget`."],["Users can specify a search radius (`maxDistance`) and a reducer to handle overlapping points (`reducer`)."]]],[]]