AI-generated Key Takeaways
-
bounds()
returns the bounding rectangle (Geometry) of a given geometry, such as a LinearRing. -
It accepts optional
maxError
andproj
arguments for reprojection control and output projection, respectively. -
If
proj
is not specified, the bounding rectangle is returned in EPSG:4326. -
This function is useful for determining the minimum bounding area that encloses a given geometry.
Usage | Returns |
---|---|
LinearRing.bounds(maxError, proj) | Geometry |
Argument | Type | Details |
---|---|---|
this: geometry | Geometry | Return the bounding box of this geometry. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |
Examples
Code Editor (JavaScript)
// Define a LinearRing object. var linearRing = ee.Geometry.LinearRing( [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]); // Apply the bounds method to the LinearRing object. var linearRingBounds = linearRing.bounds(); // Print the result to the console. print('linearRing.bounds(...) =', linearRingBounds); // Display relevant geometries on the map. Map.setCenter(-122.085, 37.422, 15); Map.addLayer(linearRing, {'color': 'black'}, 'Geometry [black]: linearRing'); Map.addLayer(linearRingBounds, {'color': 'red'}, 'Result [red]: linearRing.bounds');
import ee import geemap.core as geemap
Colab (Python)
# Define a LinearRing object. linearring = ee.Geometry.LinearRing( [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]] ) # Apply the bounds method to the LinearRing object. linearring_bounds = linearring.bounds() # Print the result. display('linearring.bounds(...) =', linearring_bounds) # Display relevant geometries on the map. m = geemap.Map() m.set_center(-122.085, 37.422, 15) m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring') m.add_layer( linearring_bounds, {'color': 'red'}, 'Result [red]: linearring.bounds' ) m