AI-generated Key Takeaways
-
Defines a closed ring on the Earth's surface, ensuring the last point connects back to the first.
-
Allows simplified creation of geodesic (EPSG:4326) rings using a series of longitude and latitude values.
-
Accepts various input formats for ring coordinates, including GeoJSON, ee.Geometry objects, or raw numerical coordinates.
-
Projection and geodesic behavior can be customized; defaults to input projection or EPSG:4326 with geodesic edges if unspecified.
-
Includes an optional parameter to control error during reprojection for precise geometry handling.
For convenience, varargs may be used when all arguments are numbers. This allows creating geodesic EPSG:4326 LinearRings given an even number of arguments, e.g. ee.Geometry.LinearRing(aLng, aLat, bLng, bLat, ..., aLng, aLat).
Usage | Returns |
---|---|
ee.Geometry.LinearRing(coords, proj, geodesic, maxError) | Geometry.LinearRing |
Argument | Type | Details |
---|---|---|
coords | List<Geometry>|List<List<Number>>|List<Number> | A list of points in the ring. May be a list of coordinates in the GeoJSON 'LinearRing' format, a list of at least three ee.Geometry objects describing a point, or a list of at least six numbers defining the [x,y] coordinates of at least three points. |
proj | Projection, optional | The projection of this geometry. If unspecified, the default is the projection of the input ee.Geometry, or EPSG:4326 if there are no ee.Geometry inputs. |
geodesic | Boolean, optional | If false, edges are straight in the projection. If true, edges are curved to follow the shortest path on the surface of the Earth. The default is the geodesic state of the inputs, or true if the inputs are numbers. |
maxError | ErrorMargin, optional | Max error when input geometry must be reprojected to an explicitly requested result projection or geodesic state. |