Stay organized with collections
Save and categorize content based on your preferences.
Returns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.
Usage
Returns
LinearRing.centroid(maxError, proj)
Geometry
Argument
Type
Details
this: geometry
Geometry
Calculates the centroid of this geometry.
maxError
ErrorMargin, default: null
The maximum amount of error tolerated when performing any necessary reprojection.
proj
Projection, default: null
If specified, the result will be in this projection. Otherwise it will be in EPSG:4326.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-05 UTC."],[[["`centroid()` returns a point at the center of the highest-dimension components of a geometry, ignoring lower dimensions."],["It is applicable to `LinearRing` geometries and accepts optional `maxError` and `proj` parameters."],["`maxError` controls the reprojection error tolerance, while `proj` specifies the output projection (defaults to EPSG:4326)."],["The function effectively calculates the geometric center of the input geometry."]]],[]]