AI-generated Key Takeaways
-
Array.exp()
calculates the exponential of each element in an input array, raising Euler's number (e) to the power of each element. -
The function returns a new array with the calculated exponential values.
-
It can be applied to arrays of any numeric data type and even empty arrays.
-
The examples provided showcase its usage in both JavaScript and Python environments for interactive visualization.
Usage | Returns |
---|---|
Array.exp() | Array |
Argument | Type | Details |
---|---|---|
this: input | Array | The input array. |
Examples
Code Editor (JavaScript)
var empty = ee.Array([], ee.PixelType.int8()); print(empty.exp()); // [] // [Math.pow(Math.E, -1), 1, Math.E, 7.389] print(ee.Array([-1, 0, 1, 2]).exp()); var start = -5; var end = 2; var points = ee.Array(ee.List.sequence(start, end, null, 50)); var values = points.exp(); // Plot exp() defined above. var chart = ui.Chart.array.values(values, 0, points) .setOptions({ viewWindow: {min: start, max: end}, hAxis: { title: 'x', viewWindowMode: 'maximized', }, vAxis: { title: 'exp(x)', }, lineWidth: 1, pointSize: 0, }); print(chart);
import ee import geemap.core as geemap
Colab (Python)
import altair as alt import pandas as pd empty = ee.Array([], ee.PixelType.int8()) display(empty.exp()) # [] # [pow(math.e, -1), 1, math.e, 7.389] display(ee.Array([-1, 0, 1, 2]).exp()) start = -5 end = 2 points = ee.Array(ee.List.sequence(start, end, None, 50)) values = points.exp() df = pd.DataFrame({'x': points.getInfo(), 'exp(x)': values.getInfo()}) # Plot exp() defined above. alt.Chart(df).mark_line().encode( x=alt.X('x'), y=alt.Y('exp(x)') )