Usage | Returns |
---|---|
ee.Kernel.euclidean(radius, units, normalize, magnitude) | Kernel |
Argument | Type | Details |
---|---|---|
radius | Float | The radius of the kernel to generate. |
units | String, default: "pixels" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |
normalize | Boolean, default: false | Normalize the kernel values to sum to 1. |
magnitude | Float, default: 1 | Scale each value by this amount. |
Examples
Code Editor (JavaScript)
print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3})); /** * Output weights matrix (up to 1/1000 precision for brevity) * * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242] * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605] * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162] * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000] * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162] * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605] * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242] */
import ee import geemap.core as geemap
Colab (Python)
from pprint import pprint print('A Euclidean distance kernel:') pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo()) # Output weights matrix (up to 1/1000 precision for brevity) # [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242] # [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605] # [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162] # [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000] # [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162] # [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605] # [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]