AI-generated Key Takeaways
-
arrayProject
reduces the dimensionality of an array image by projecting it onto specified axes. -
Dropped axes must have a maximum length of 1, meaning they can't contain more than one element along that dimension.
-
This operation effectively reshapes the array within each pixel of the image, retaining data from the specified
axes
. -
It's useful for operations like concatenating elements from different axes or reducing the complexity of an array image.
Usage | Returns |
---|---|
Image.arrayProject(axes) | Image |
Argument | Type | Details |
---|---|---|
this: input | Image | Input image. |
axes | List | The axes to retain. Other axes will be discarded and must be at most length 1. |
Examples
Code Editor (JavaScript)
// A function to print arrays for a selected pixel in the following examples. function sampArrImg(arrImg) { var point = ee.Geometry.Point([-121, 42]); return arrImg.sample(point, 500).first().get('array'); } // Create a 2D array image with the 0-axis having length 6 and the 1-axis // having length 1. var arrayImg2D = ee.Image([0, 1, 2, 3, 4, 5]).toArray().toArray(1); print('2D array image (pixel)', sampArrImg(arrayImg2D)); // [[0], // [1], // [2], // [3], // [4], // [5]] // Project the 2D array to a 1D array, retain the 0-axis (concatenate elements // from the 1-axis into the 0-axis). var arrayImg2Dto1D = arrayImg2D.arrayProject([0]); print('2D array image (pixel)', sampArrImg(arrayImg2Dto1D)); // [0, 1, 2, 3, 4, 5]
import ee import geemap.core as geemap
Colab (Python)
# A function to print arrays for a selected pixel in the following examples. def samp_arr_img(arr_img): point = ee.Geometry.Point([-121, 42]) return arr_img.sample(point, 500).first().get('array') # Create a 2D array image with the 0-axis having length 6 and the 1-axis # having length 1. array_img_2d = ee.Image([0, 1, 2, 3, 4, 5]).toArray().toArray(1) print('2D array image (pixel):', samp_arr_img(array_img_2d).getInfo()) # [[0], # [1], # [2], # [3], # [4], # [5]] # Project the 2D array to a 1D array, retain the 0-axis (concatenate elements # from the 1-axis into the 0-axis). array_img_2d_to_1d = array_img_2d.arrayProject([0]) print('2D array image (pixel):', samp_arr_img(array_img_2d_to_1d).getInfo()) # [0, 1, 2, 3, 4, 5]