AI-generated Key Takeaways
-
Image.arrayTranspose()
transposes two dimensions of each array pixel within an image. -
By default, it swaps the first (axis 0) and second (axis 1) dimensions of the array, effectively transposing a 2D array.
-
Users can specify which axes to swap using the
axis1
andaxis2
parameters. -
This function is useful for manipulating the structure of array images, such as changing the orientation of a 2D array.
Usage | Returns |
---|---|
Image.arrayTranspose(axis1, axis2) | Image |
Argument | Type | Details |
---|---|---|
this: input | Image | Input image. |
axis1 | Integer, default: 0 | First axis to swap. |
axis2 | Integer, default: 1 | Second axis to swap. |
Examples
Code Editor (JavaScript)
// A function to print arrays for a selected pixel in the following examples. function sampArrImg(arrImg) { var point = ee.Geometry.Point([-121, 42]); return arrImg.sample(point, 500).first().get('array'); } // Create a 2D array image. var arrayImg2D = ee.Image([0, 1, 2, 3, 4, 5]).toArray().arrayReshape( ee.Image([2, 3]).toArray(), 2); print('2D 2x3 array image (pixel)', sampArrImg(arrayImg2D)); // [[0, 1, 2], // [3, 4, 5]] // Swap 0-axis and 1-axis. Input is a 2x3 array, output will be 3x2. var transposed = arrayImg2D.arrayTranspose(); print('Transposed (3x2) array image (pixel)', sampArrImg(transposed)); // [[0, 3], // [1, 4], // [2, 5]]
import ee import geemap.core as geemap
Colab (Python)
# A function to print arrays for a selected pixel in the following examples. def samp_arr_img(arr_img): point = ee.Geometry.Point([-121, 42]) return arr_img.sample(point, 500).first().get('array') # Create a 2D array image. array_img_2d = ee.Image([0, 1, 2, 3, 4, 5]).toArray().arrayReshape( ee.Image([2, 3]).toArray(), 2 ) print('2D 2x3 array image (pixel):', samp_arr_img(array_img_2d).getInfo()) # [[0, 1, 2], # [3, 4, 5]] # Swap 0-axis and 1-axis. Input is a 2x3 array, output will be 3x2. transposed = array_img_2d.arrayTranspose() print('Transposed (3x2) array image (pixel):', samp_arr_img(transposed).getInfo()) # [[0, 3], # [1, 4], # [2, 5]]