Mesin yang digunakan untuk membuat model dan menyelesaikan program linear. Contoh di bawah ini menyelesaikan program linear berikut:
Dua variabel, x
dan y
:
0 ≤ x ≤ 10
0 ≤ y ≤ 5
Batasan:
0 ≤ 2 * x + 5 * y ≤ 10
0 ≤ 10 * x + 3 * y ≤ 20
Tujuan:
Maksimalkan x + y
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc // Add two variables, 0 <= x <= 10 and 0 <= y <= 5 engine.addVariable('x', 0, 10); engine.addVariable('y', 0, 5); // Create the constraint: 0 <= 2 * x + 5 * y <= 10 var constraint = engine.addConstraint(0, 10); constraint.setCoefficient('x', 2); constraint.setCoefficient('y', 5); // Create the constraint: 0 <= 10 * x + 3 * y <= 20 var constraint = engine.addConstraint(0, 20); constraint.setCoefficient('x', 10); constraint.setCoefficient('y', 3); // Set the objective to be x + y engine.setObjectiveCoefficient('x', 1); engine.setObjectiveCoefficient('y', 1); // Engine should maximize the objective engine.setMaximization(); // Solve the linear program var solution = engine.solve(); if (!solution.isValid()) { Logger.log('No solution ' + solution.getStatus()); } else { Logger.log('Value of x: ' + solution.getVariableValue('x')); Logger.log('Value of y: ' + solution.getVariableValue('y')); }
Metode
Dokumentasi mendetail
addConstraint(lowerBound, upperBound)
Menambahkan batasan linear baru dalam model. Batas atas dan bawah batasan
ditentukan pada waktu pembuatan. Koefisien untuk variabel ditentukan melalui panggilan ke LinearOptimizationConstraint.setCoefficient(variableName, coefficient)
.
var engine = LinearOptimizationService.createEngine(); // Create a linear constraint with the bounds 0 and 10 var constraint = engine.addConstraint(0, 10); // Create a variable so we can add it to the constraint engine.addVariable('x', 0, 5); // Set the coefficient of the variable in the constraint. The constraint is now: // 0 <= 2 * x <= 5 constraint.setCoefficient('x', 2);
Parameter
Name | Jenis | Deskripsi |
---|---|---|
lowerBound | Number | batas bawah batasan |
upperBound | Number | batas atas batasan |
Return
LinearOptimizationConstraint
— batasan yang dibuat
addConstraints(lowerBounds, upperBounds, variableNames, coefficients)
Menambahkan batasan dalam batch ke model.
var engine = LinearOptimizationService.createEngine(); // Add a boolean variable 'x' (integer >= 0 and <= 1) and a real (continuous >= 0 and <= 100) variable 'y'. engine.addVariables(['x', 'y'], [0, 0], [1, 100], [LinearOptimizationService.VariableType.INTEGER, LinearOptimizationService.VariableType.CONTINUOUS]); // Adds two constraints: // 0 <= x + y <= 3 // 1 <= 10 * x - y <= 5 engine.addConstraints([0.0, 1.0], [3.0, 5.0], [['x', 'y'], ['x', 'y']], [[1, 1], [10, -1]]);
Parameter
Name | Jenis | Deskripsi |
---|---|---|
lowerBounds | Number[] | batas bawah batasan |
upperBounds | Number[] | batas atas batasan |
variableNames | String[][] | nama variabel yang koefisiennya ditetapkan |
coefficients | Number[][] | koefisien yang disetel |
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
addVariable(name, lowerBound, upperBound)
Menambahkan variabel berkelanjutan baru ke model. Variabel dirujuk oleh namanya. Jenis ditetapkan ke VariableType.CONTINUOUS
.
var engine = LinearOptimizationService.createEngine(); var constraint = engine.addConstraint(0, 10); // Add a boolean variable (integer >= 0 and <= 1) engine.addVariable('x', 0, 1, LinearOptimizationService.VariableType.INTEGER); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100);
Parameter
Name | Jenis | Deskripsi |
---|---|---|
name | String | nama unik variabel |
lowerBound | Number | batas bawah variabel |
upperBound | Number | batas atas variabel |
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
addVariable(name, lowerBound, upperBound, type)
Menambahkan variabel baru ke model. Variabel dirujuk oleh namanya.
var engine = LinearOptimizationService.createEngine(); var constraint = engine.addConstraint(0, 10); // Add a boolean variable (integer >= 0 and <= 1) engine.addVariable('x', 0, 1, LinearOptimizationService.VariableType.INTEGER); // Add a real (continuous) variable engine.addVariable('y', 0, 100, LinearOptimizationService.VariableType.CONTINUOUS);
Parameter
Name | Jenis | Deskripsi |
---|---|---|
name | String | nama unik variabel |
lowerBound | Number | batas bawah variabel |
upperBound | Number | batas atas variabel |
type | VariableType | jenis variabel, dapat berupa salah satu dari VariableType |
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
addVariable(name, lowerBound, upperBound, type, objectiveCoefficient)
Menambahkan variabel baru ke model. Variabel dirujuk oleh namanya.
var engine = LinearOptimizationService.createEngine(); var constraint = engine.addConstraint(0, 10); // Add a boolean variable (integer >= 0 and <= 1) engine.addVariable('x', 0, 1, LinearOptimizationService.VariableType.INTEGER, 2); // The objective is now 2 * x. // Add a real (continuous) variable engine.addVariable('y', 0, 100, LinearOptimizationService.VariableType.CONTINUOUS, -5); // The objective is now 2 * x - 5 * y.
Parameter
Name | Jenis | Deskripsi |
---|---|---|
name | String | nama unik variabel |
lowerBound | Number | batas bawah variabel |
upperBound | Number | batas atas variabel |
type | VariableType | jenis variabel, dapat berupa salah satu dari VariableType |
objectiveCoefficient | Number | koefisien objektif dari variabel |
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
addVariables(names, lowerBounds, upperBounds, types, objectiveCoefficients)
Menambahkan variabel dalam batch ke model. Variabel dirujuk oleh namanya.
var engine = LinearOptimizationService.createEngine(); // Add a boolean variable 'x' (integer >= 0 and <= 1) and a real (continuous >=0 and <= 100) // variable 'y'. engine.addVariables(['x', 'y'], [0, 0], [1, 100], [LinearOptimizationService.VariableType.INTEGER, LinearOptimizationService.VariableType.CONTINUOUS]);
Parameter
Name | Jenis | Deskripsi |
---|---|---|
names | String[] | nama unik variabel |
lowerBounds | Number[] | batas bawah variabel |
upperBounds | Number[] | batas atas variabel |
types | VariableType[] | jenis variabel, dapat berupa salah satu dari VariableType |
objectiveCoefficients | Number[] | koefisien objektif dari variabel |
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
setMaximization()
Menetapkan arah pengoptimalan untuk memaksimalkan fungsi tujuan linear.
var engine = LinearOptimizationService.createEngine(); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100); // Set the coefficient of 'y' in the objective. // The objective is now 5 * y engine.setObjectiveCoefficient('y', 5); // We want to maximize. engine.setMaximization();
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
setMinimization()
Menetapkan arah pengoptimalan untuk meminimalkan fungsi tujuan linear.
var engine = LinearOptimizationService.createEngine(); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100); // Set the coefficient of 'y' in the objective. // The objective is now 5 * y engine.setObjectiveCoefficient('y', 5); // We want to minimize engine.setMinimization();
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
setObjectiveCoefficient(variableName, coefficient)
Menetapkan koefisien variabel dalam fungsi tujuan linear.
var engine = LinearOptimizationService.createEngine(); // Add a real (continuous) variable. Notice the lack of type specification. engine.addVariable('y', 0, 100); // Set the coefficient of 'y' in the objective. // The objective is now 5 * y engine.setObjectiveCoefficient('y', 5);
Parameter
Name | Jenis | Deskripsi |
---|---|---|
variableName | String | nama variabel yang koefisiennya ditetapkan |
coefficient | Number | koefisien variabel dalam fungsi tujuan |
Return
LinearOptimizationEngine
— mesin pengoptimalan linear
solve()
Menyelesaikan program linear saat ini dengan batas waktu default 30 detik. Menampilkan solusi yang ditemukan.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); if (!solution.isValid()) { throw 'No solution ' + solution.getStatus(); } Logger.log('Value of x: ' + solution.getVariableValue('x'));
Return
LinearOptimizationSolution
— solusi pengoptimalan
solve(seconds)
Memecahkan program linear saat ini. Menampilkan solusi yang ditemukan, dan jika solusi tersebut optimal.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(300); if (!solution.isValid()) { throw 'No solution ' + solution.getStatus(); } Logger.log('Value of x: ' + solution.getVariableValue('x'));
Parameter
Name | Jenis | Deskripsi |
---|---|---|
seconds | Number | tenggat waktu untuk menyelesaikan soal, dalam detik; tenggat waktu maksimum adalah 300 detik |
Return
LinearOptimizationSolution
— solusi pengoptimalan