Announcement: All noncommercial projects registered to use Earth Engine before April 15, 2025 must verify noncommercial eligibility to maintain Earth Engine access.
Stay organized with collections
Save and categorize content based on your preferences.
Array sorting is useful for obtaining custom quality mosaics which involve reducing a
subset of image bands according to the values in a different band. The following example
sorts by NDVI, then gets the mean of a subset of observations in the collection with the
highest NDVI values:
As in the linear modeling example, separate the bands of interest from the sort index (NDVI)
using arraySlice() along the band axis. Then sort the bands of interest by
sort index using arraySort(). After the pixels have been sorted by
descending NDVI, use arraySlice() along the imageAxis to
get 20% of the highest NDVI pixels. Lastly, apply arrayReduce() along the
imageAxis with a mean reducer to get the mean of the highest NDVI
pixels. The final step converts the array image back to a multi-band image for display.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-29 UTC."],[[["\u003cp\u003eThis example demonstrates using array sorting to calculate the mean of the top 20% of Landsat 8 images with the highest NDVI values within a specific region and timeframe.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves preparing the Landsat 8 collection by scaling, masking, and adding an NDVI band.\u003c/p\u003e\n"],["\u003cp\u003eImage pixels are sorted based on NDVI values using \u003ccode\u003earraySort()\u003c/code\u003e, allowing selection of the highest values using \u003ccode\u003earraySlice()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003earrayReduce()\u003c/code\u003e function is applied to calculate the mean of the selected pixels, resulting in a composite image representing the desired values.\u003c/p\u003e\n"],["\u003cp\u003eThe final output is a multi-band image displaying the mean values for the selected bands (SR_B6, SR_B5, SR_B4) of the highest NDVI pixels.\u003c/p\u003e\n"]]],["The process involves sorting Landsat 8 images by NDVI to create a custom mosaic. First, a function prepares images by scaling, masking, and calculating NDVI. Then, a collection of images is filtered by location and date range, transformed into an array, and sorted by descending NDVI values. The top 20% of NDVI observations are isolated. Finally, the mean of these top observations is calculated and transformed into a multi-band image for display.\n"],null,["# Array Sorting and Reducing\n\nArray sorting is useful for obtaining custom quality mosaics which involve reducing a\nsubset of image bands according to the values in a different band. The following example\nsorts by NDVI, then gets the mean of a subset of observations in the collection with the\nhighest NDVI values:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a function that scales and masks Landsat 8 surface reflectance images\n// and adds an NDVI band.\nfunction prepSrL8(image) {\n // Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Calculate NDVI.\n var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])\n .rename('NDVI');\n\n // Replace original bands with scaled bands, add NDVI band, and apply masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .addBands(ndvi)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Define an arbitrary region of interest as a point.\nvar roi = ee.Geometry.Point(-122.26032, 37.87187);\n\n// Load a Landsat 8 surface reflectance collection.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n // Filter to get only imagery at a point of interest.\n .filterBounds(roi)\n // Filter to get only six months of data.\n .filterDate('2021-01-01', '2021-07-01')\n // Prepare images by mapping the prepSrL8 function over the collection.\n .map(prepSrL8)\n // Select the bands of interest to avoid taking up unneeded memory.\n .select('SR_B.|NDVI');\n\n// Convert the collection to an array.\nvar array = collection.toArray();\n\n// Label of the axes.\nvar imageAxis = 0;\nvar bandAxis = 1;\n\n// Get the NDVI slice and the bands of interest.\nvar bandNames = collection.first().bandNames();\nvar bands = array.arraySlice(bandAxis, 0, bandNames.length());\nvar ndvi = array.arraySlice(bandAxis, -1);\n\n// Sort by descending NDVI.\nvar sorted = bands.arraySort(ndvi.multiply(-1));\n\n// Get the highest 20% NDVI observations per pixel.\nvar numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();\nvar highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);\n\n// Get the mean of the highest 20% NDVI observations by reducing\n// along the image axis.\nvar mean = highestNdvi.arrayReduce({\n reducer: ee.Reducer.mean(),\n axes: [imageAxis]\n});\n\n// Turn the reduced array image into a multi-band image for display.\nvar meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);\nMap.centerObject(roi, 12);\nMap.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a function that scales and masks Landsat 8 surface reflectance images\n# and adds an NDVI band.\ndef prep_sr_l8(image):\n # Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Calculate NDVI.\n ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .addBands(ndvi)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Define an arbitrary region of interest as a point.\nroi = ee.Geometry.Point(-122.26032, 37.87187)\n\n# Load a Landsat 8 surface reflectance collection.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n # Filter to get only imagery at a point of interest.\n .filterBounds(roi)\n # Filter to get only six months of data.\n .filterDate('2021-01-01', '2021-07-01')\n # Prepare images by mapping the prep_sr_l8 function over the collection.\n .map(prep_sr_l8)\n # Select the bands of interest to avoid taking up unneeded memory.\n .select('SR_B.|NDVI')\n)\n\n# Convert the collection to an array.\narray = collection.toArray()\n\n# Label of the axes.\nimage_axis = 0\nband_axis = 1\n\n# Get the NDVI slice and the bands of interest.\nband_names = collection.first().bandNames()\nbands = array.arraySlice(band_axis, 0, band_names.length())\nndvi = array.arraySlice(band_axis, -1)\n\n# Sort by descending NDVI.\nsorted = bands.arraySort(ndvi.multiply(-1))\n\n# Get the highest 20% NDVI observations per pixel.\nnum_images = sorted.arrayLength(image_axis).multiply(0.2).int()\nhighest_ndvi = sorted.arraySlice(image_axis, 0, num_images)\n\n# Get the mean of the highest 20% NDVI observations by reducing\n# along the image axis.\nmean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])\n\n# Turn the reduced array image into a multi-band image for display.\nmean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])\nm = geemap.Map()\nm.center_object(roi, 12)\nm.add_layer(\n mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}\n)\nm\n```\n\nAs in the linear modeling example, separate the bands of interest from the sort index (NDVI)\nusing `arraySlice()` along the band axis. Then sort the bands of interest by\nsort index using `arraySort()`. After the pixels have been sorted by\ndescending NDVI, use `arraySlice()` along the `imageAxis` to\nget 20% of the highest NDVI pixels. Lastly, apply `arrayReduce()` along the\n`imageAxis` with a mean reducer to get the mean of the highest NDVI\npixels. The final step converts the array image back to a multi-band image for display."]]