Możesz używać ML Kit do rozpoznawania tekstu na obrazach lub w filmach, np. na znaku drogowym. Główne cechy tej funkcji:
Funkcja | Nieopakowane | Łączenie w pakiety |
---|---|---|
Nazwa biblioteki | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition
com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
Implementacja | Model jest dynamicznie pobierany za pomocą Usług Google Play. | Model jest statycznie powiązany z aplikacją w momencie kompilacji. |
Rozmiar aplikacji | Około 260 KB na architekturę skryptu. | O ok. 4 MB na skrypt na architekturę. |
Czas inicjowania | Przed pierwszym użyciem może być konieczne poczekanie na pobranie modelu. | Model jest dostępny od razu. |
Wyniki | W czasie rzeczywistym na większości urządzeń w przypadku biblioteki czcionki łacińskiej, wolniej w przypadku innych. | W czasie rzeczywistym na większości urządzeń w przypadku biblioteki czcionki łacińskiej, wolniej w przypadku innych. |
Wypróbuj
- Aby zobaczyć przykład użycia tego interfejsu API, wypróbuj przykładową aplikację.
- Wypróbuj kod samodzielnie, korzystając z ćwiczeń z programowania.
Zanim zaczniesz
- W pliku
build.gradle
na poziomie projektu dodaj repozytorium Maven firmy Google w sekcjachbuildscript
iallprojects
. Dodaj zależności do bibliotek ML Kit na Androida do pliku Gradle na poziomie aplikacji modułu. Jest to zwykle
app/build.gradle
:Aby połączyć model z aplikacją:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Używanie modelu w Usługach Google Play:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
Jeśli zdecydujesz się użyć modelu w Usługach Google Play, możesz skonfigurować aplikację tak, aby automatycznie pobierała model na urządzenie po zainstalowaniu aplikacji ze Sklepu Play. Aby to zrobić, dodaj do pliku
AndroidManifest.xml
aplikacji następującą deklarację:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
Możesz też sprawdzić dostępność modelu i poprosić o pobieranie za pomocą interfejsu ModuleInstallClient API w Usługach Google Play. Jeśli nie włączysz pobierania modelu w czasie instalacji ani nie poprosisz o pobieranie modelu, model zostanie pobrany przy pierwszym uruchomieniu skanera. Żądania wysłane przed zakończeniem pobierania nie przynoszą żadnych wyników.
1. Utwórz instancję TextRecognizer
Utwórz instancję TextRecognizer
, przekazując opcje związane z biblioteką, której deklarowana wyżej zależność:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. Przygotuj obraz wejściowy
Aby rozpoznać tekst na obrazie, utwórz obiekt InputImage
na podstawie Bitmap
, media.Image
, ByteBuffer
, tablicy bajtów lub pliku na urządzeniu. Następnie prześlij obiekt InputImage
do metody processImage
obiektu TextRecognizer
.
Obiekt InputImage
możesz utworzyć z różnych źródeł. Każde z nich opisane jest poniżej.
Korzystanie z media.Image
Aby utworzyć obiekt InputImage
na podstawie obiektu media.Image
, na przykład podczas robienia zdjęcia aparatem urządzenia, przekaż obiekt media.Image
i obrót obrazu do obiektu InputImage.fromMediaImage()
.
Jeśli używasz biblioteki
CameraX, klasy OnImageCapturedListener
i
ImageAnalysis.Analyzer
obliczają wartość rotacji za Ciebie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz go obliczyć na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu na urządzeniu:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Następnie prześlij obiekt media.Image
i wartość stopnia obrotu do InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Korzystanie z identyfikatora URI pliku
Aby utworzyć obiekt InputImage
na podstawie identyfikatora URI pliku, prześlij kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath()
. Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT
, aby poprosić użytkownika o wybranie obrazu z aplikacji Galeria.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Używanie ByteBuffer
lub ByteArray
Aby utworzyć obiekt InputImage
na podstawie obiektu ByteBuffer
lub ByteArray
, najpierw oblicz stopień obrotu obrazu w sposób opisany wcześniej w przypadku danych wejściowych media.Image
.
Następnie utwórz obiekt InputImage
z buforem lub tablicą, a także wysokość, szerokość, format kodowania kolorów i stopień obrotu obrazu:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Korzystanie z Bitmap
Aby utworzyć obiekt InputImage
z obiektu Bitmap
, zastosuj tę deklarację:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Obraz jest reprezentowany przez obiekt Bitmap
z stopniami obrotu.
3. Przetwarzanie obrazu
Przekaż obraz do metody process
:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Wyodrębnianie tekstu z bloków rozpoznanego tekstu
Jeśli operacja rozpoznawania tekstu zakończy się powodzeniem, obiekt Text
zostanie przekazany do odbiornika sukcesu. Obiekt Text
zawiera pełny tekst rozpoznany na obrazie oraz co najmniej 0 obiektów TextBlock
.
Każdy element TextBlock
reprezentuje prostokątny blok tekstu, który zawiera co najmniej 0 lub więcej obiektów Line
. Każdy obiekt Line
reprezentuje wiersz tekstu, który zawiera co najmniej 1 obiekt Element
. Każdy obiekt Element
reprezentuje słowo lub element podobny do słowa, który zawiera co najmniej 0 lub więcej obiektów Symbol
. Każdy obiekt Symbol
reprezentuje znak, cyfrę lub element podobny do słowa.
W przypadku każdego obiektu TextBlock
, Line
, Element
i Symbol
możesz uzyskać tekst rozpoznany w regionie, współrzędne ograniczające regionu oraz wiele innych atrybutów, takich jak informacje o rotacji, wynik wiarygodności itp.
Na przykład:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Wskazówki dotyczące obrazów
-
Aby ML Kit mógł dokładnie rozpoznawać tekst, obrazy wejściowe muszą zawierać tekst reprezentowany przez wystarczającą ilość danych pikseli. W idealnym przypadku każdy znak powinien mieć co najmniej 16 x 16 pikseli. Zwykle nie ma korzyści z ustawienia znaków na większy rozmiar niż 24 x 24 piksele.
Na przykład obraz o wymiarach 640 x 480 może się dobrze sprawdzić do zeskanowania wizytówki, która zajmuje całą szerokość obrazu. Aby zeskanować dokument wydrukowany na papierze w formacie Letter, może być wymagany obraz o rozmiarze 720 × 1280 pikseli.
-
Złe wyostrzanie obrazu może wpływać na dokładność rozpoznawania tekstu. Jeśli nie uzyskujesz zadowalających wyników, poproś użytkownika o ponowne zrobienie zdjęcia.
-
Jeśli tekst jest rozpoznawany w aplikacji działającej w czasie rzeczywistym, należy wziąć pod uwagę ogólne wymiary obrazów wejściowych. Mniejsze obrazy można przetwarzać szybciej. Aby zmniejszyć opóźnienie, zadbaj o to, aby tekst zajmował jak największą część obrazu, oraz rób zdjęcia w niższych rozdzielczościach (z uwzględnieniem wspomnianych powyżej wymagań dotyczących dokładności). Więcej informacji znajdziesz w artykule Wskazówki dotyczące zwiększania skuteczności.
Wskazówki dotyczące zwiększania skuteczności
- Jeśli używasz interfejsu API
Camera
lubcamera2
, ograniczaj wywołania do detektora. Jeśli podczas działania detektora pojawi się nowa klatka wideo, odrzuć ją. Przykładem jest klasaVisionProcessorBase
w przykładowej aplikacji krótkiego wprowadzenia. - Jeśli używasz interfejsu API
CameraX
, upewnij się, że strategia kontroli ciśnienia ma ustawioną wartość domyślnąImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Dzięki temu gwarantujemy, że do analizy zostanie przesłany tylko jeden obraz. Jeśli podczas przetwarzania zostanie wygenerowanych więcej obrazów, zostaną one automatycznie odrzucone i nie zostaną umieszczone w kolejce do przesłania. Gdy wywołasz metodę ImageProxy.close(), aby zamknąć analizowany obraz, zostanie przesłany następny najnowszy obraz. - Jeśli używasz danych wyjściowych z detektora do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik z ML Kit, a potem wyrenderuj obraz i nałóż go w jednym kroku. Jest on renderowany na powierzchni wyświetlacza tylko raz dla każdej ramki wejściowej. Przykładowo zapoznaj się z klasami
CameraSourcePreview
iGraphicOverlay
w przykładowej aplikacji krótkiego wprowadzenia. - Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie
ImageFormat.YUV_420_888
. Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w formacieImageFormat.NV21
. - Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak o wymaganiach dotyczących wymiarów obrazu w tym interfejsie API.