Text in Bildern mit ML Kit unter Android erkennen

Mit ML Kit können Sie Text in Bildern oder Videos erkennen, z. B. den Text eines Straßenschilds. Die wichtigsten Merkmale dieser Funktion sind:

Funktion Nicht in Paketen Gebündelt
Name der Bibliothek com.google.android.gms:play-services-mlkit-text-recognition

com.google.android.gms:play-services-mlkit-text-recognition-chinese

com.google.android.gms:play-services-mlkit-text-recognition-devanagari

com.google.android.gms:play-services-mlkit-text-recognition-japanese

com.google.android.gms:play-services-mlkit-text-recognition-korean

com.google.mlkit:text-recognition

com.google.mlkit:text-recognition-chinese

com.google.mlkit:text-recognition-devanagari

com.google.mlkit:text-recognition-japanese

com.google.mlkit:text-recognition-korean

Implementierung Das Modell wird dynamisch über die Google Play-Dienste heruntergeladen. Das Modell wird zur Buildzeit statisch mit Ihrer App verknüpft.
App-Größe Pro Skriptarchitektur wird die Größe um etwa 260 KB erhöht. Die Größe der Scripts erhöht sich um etwa 4 MB pro Architektur.
Initialisierungszeit Vor der ersten Verwendung kann es möglicherweise etwas dauern, bis das Modell heruntergeladen wurde. Modell ist sofort verfügbar.
Leistung Auf den meisten Geräten in Echtzeit für die lateinische Schriftbibliothek, auf anderen langsamer. Echtzeit auf den meisten Geräten für die lateinamerikanische Skriptbibliothek, auf anderen langsamer

Jetzt ausprobieren

  • In der Beispielanwendung sehen Sie ein Beispiel für die Verwendung dieser API.
  • Testen Sie den Code selbst mit dem Codelab.

Vorbereitung

  1. In die Datei build.gradle auf Projektebene muss das Maven-Repository von Google in die Abschnitte buildscript und allprojects aufgenommen werden.
  2. Fügen Sie der Gradle-Datei Ihres Moduls auf App-Ebene (in der Regel app/build.gradle) die Abhängigkeiten für die ML Kit-Android-Bibliotheken hinzu:

    So bündeln Sie das Modell mit Ihrer App:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.mlkit:text-recognition:16.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.mlkit:text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.mlkit:text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.mlkit:text-recognition-korean:16.0.1'
    }
    

    Verwendung des Modells in Google Play-Diensten:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1'
    }
    
  3. Wenn Sie das Modell in Google Play-Diensten verwenden, können Sie Ihre App so konfigurieren, dass das Modell automatisch auf das Gerät heruntergeladen wird, nachdem Ihre App aus dem Play Store installiert wurde. Fügen Sie dazu der Datei AndroidManifest.xml Ihrer App die folgende Deklaration hinzu:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ocr" >
          <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." -->
    </application>
    

    Sie können die Verfügbarkeit des Modells auch explizit prüfen und den Download über die ModuleInstallClient API von Google Play-Diensten anfordern. Wenn Sie das Installationszeitmodell nicht aktivieren herunterladen oder expliziten Download anfordern, wird das Modell zuerst wenn Sie den Scanner ausführen. Anfragen, die Sie stellen, bevor der Download Fertigstellen, erzeugen keine Ergebnisse.

1. Instanz von TextRecognizer erstellen

Erstellen Sie eine Instanz von TextRecognizer und übergeben Sie die Optionen. zu der Bibliothek, für die Sie oben eine Abhängigkeit erklärt haben:

Kotlin

// When using Latin script library
val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

// When using Chinese script library
val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())

// When using Devanagari script library
val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build())

// When using Japanese script library
val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build())

// When using Korean script library
val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())

Java

// When using Latin script library
TextRecognizer recognizer =
  TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

// When using Chinese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build());

// When using Devanagari script library
TextRecognizer recognizer =
  TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build());

// When using Japanese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build());

// When using Korean script library
TextRecognizer recognizer =
  TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());

2. Eingabebild vorbereiten

Um Text in einem Bild zu erkennen, erstellen Sie ein InputImage-Objekt aus ein Bitmap-, media.Image-, ByteBuffer-, Byte-Array oder eine Datei im . Übergeben Sie dann das InputImage-Objekt an den Die Methode processImage von TextRecognizer.

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Im Folgenden werden die einzelnen Quellen erläutert.

Mit einem media.Image

So erstellen Sie eine InputImage: media.Image-Objekts erstellen, beispielsweise wenn Sie ein Bild von einem des Geräts an, übergeben Sie das media.Image-Objekt und die Drehung auf InputImage.fromMediaImage().

Wenn Sie die CameraX-Bibliothek verwenden, wird der Drehwert von den Klassen OnImageCapturedListener und ImageAnalysis.Analyzer für Sie berechnet.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn Sie keine Kamerabibliothek verwenden, die Ihnen den Drehungsgrad des Bildes anzeigt, lässt sich anhand des Drehungsgrads des Geräts und der Ausrichtung der Kamera berechnen. Sensor im Gerät:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das media.Image-Objekt und den Wert für den Drehungsgrad an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Wenn du ein InputImage-Objekt aus einem Datei-URI erstellen möchtest, übergebe den App-Kontext und den Datei-URI an InputImage.fromFilePath(). Dies ist nützlich, wenn Sie Verwenden Sie den Intent ACTION_GET_CONTENT, um den Nutzer zur Auswahl aufzufordern ein Bild aus ihrer Galerie-App.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer oder ByteArray verwenden

Wenn Sie ein InputImage-Objekt aus einem ByteBuffer oder ByteArray erstellen möchten, berechnen Sie zuerst den Drehwinkel des Bildes, wie oben für die media.Image-Eingabe beschrieben. Erstellen Sie dann das InputImage-Objekt mit dem Zwischenspeicher oder Array Höhe, Breite, Farbcodierungsformat und Drehungsgrad:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

So erstellen Sie eine InputImage: Bitmap-Objekt zu erstellen, nehmen Sie folgende Deklaration vor:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt in Verbindung mit Drehungsgrad dargestellt.

3. Bild verarbeiten

Übergeben Sie das Bild an die Methode process:

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Text aus erkannten Textblöcken extrahieren

Wenn die Texterkennung erfolgreich ist, wird ein Text-Objekt an die Zuhörer zu präsentieren. Ein Text-Objekt enthält den vollständigen im Bild erkannten Text und null oder mehr TextBlock-Objekte.

Jedes TextBlock steht für einen rechteckigen Textblock. die null oder mehr Line-Objekte enthält. Jedes Das Objekt Line stellt eine Textzeile dar, die null enthält oder mehr Element-Objekte. Jedes Element-Objekt steht für ein Wort oder eine wortähnliche Entität, die null oder mehr Symbol-Objekte enthält. Jedes Symbol -Objekt ein Zeichen, eine Zahl oder eine wortähnliche Entität darstellt.

Für jedes TextBlock-, Line-, Element- und Symbol-Objekt können Sie den in der Region erkannten Text, die Begrenzungskoordinaten der Region und viele andere Attribute wie Drehungsinformationen und den Konfidenzwert abrufen.

Beispiel:

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Richtlinien für Eingabebilder

  • Damit ML Kit Text genau erkennen kann, müssen Eingabebilder Text enthalten, der durch ausreichende Pixeldaten dargestellt wird. Idealerweise sollte jedes Zeichen mindestens 16 × 16 Pixel groß sein. In der Regel gibt es keine Verbesserung der Genauigkeit bei Zeichen, die größer als 24 x 24 Pixel sind.

    So eignet sich beispielsweise ein Bild mit einer Auflösung von 640 × 480 Pixeln gut zum Scannen einer Visitenkarte, die die gesamte Breite des Bildes einnimmt. Wenn Sie ein Dokument scannen möchten, das auf Papier im Letter-Format gedruckt wurde, ist möglicherweise ein Bild mit 720 × 1.280 Pixeln erforderlich.

  • Ein unscharfer Bildfokus kann die Genauigkeit der Texterkennung beeinträchtigen. Wenn Sie keine zufriedenstellenden Ergebnisse erhalten, bitten Sie den Nutzer, das Bild noch einmal aufzunehmen.

  • Wenn Sie Text in einer Echtzeitanwendung erkennen, sollten Sie die Gesamtabmessungen der Eingabebilder berücksichtigen. Kleinere Bilder können schneller verarbeitet werden. Um die Latenz zu verringern, sollte der Text möglichst viel Platz im Bild einnehmen. Außerdem sollten Sie Bilder mit niedrigerer Auflösung aufnehmen, wobei Sie die oben genannten Anforderungen an die Genauigkeit beachten. Weitere Informationen finden Sie unter Tipps zur Leistungssteigerung.

Tipps zur Leistungsverbesserung

  • Wenn Sie den Camera oder camera2 API, drosselt Aufrufe an den Detektor. Wenn ein neues Video wenn der Detektor ausgeführt wird, lassen Sie den Frame weg. Ein Beispiel finden Sie in der Klasse VisionProcessorBase in der Beispiel-App für die Schnellstartanleitung.
  • Wenn Sie die CameraX API verwenden, Achten Sie darauf, dass die Rückstaustrategie auf den Standardwert eingestellt ist ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST Dadurch wird garantiert, dass jeweils nur ein Bild zur Analyse geliefert wird. Wenn mehr Bilder erstellt werden, während der Analyser beschäftigt ist, werden sie automatisch gelöscht und nicht für die Übermittlung in die Warteschlange gestellt. Sobald das zu analysierende Bild durch Aufrufen ImageProxy.close() wird das nächste Bild geliefert.
  • Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken auf das Eingabebild zu legen, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern Sie dann das Bild und das Overlay in einem einzigen Schritt. Dadurch wird die Anzeigeoberfläche gerendert, für jeden Eingabe-Frame nur einmal. Weitere Informationen finden Sie in der CameraSourcePreview und GraphicOverlay-Klassen in der Schnellstart-Beispiel-App als Beispiel.
  • Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder in ImageFormat.YUV_420_888-Format. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder in ImageFormat.NV21-Format.
  • Sie können auch Bilder mit niedrigerer Auflösung aufnehmen. Denken Sie jedoch auch daran, Anforderungen an die Bildabmessungen dieser API.