จดจําข้อความในรูปภาพด้วย ML Kit บน Android

จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ

คุณใช้ ML Kit เพื่อจดจําข้อความในรูปภาพหรือวิดีโอได้ เช่น ข้อความเครื่องหมายจราจร ฟีเจอร์หลักของฟีเจอร์นี้มีดังนี้

API การจดจําข้อความ
คำอธิบายจดจําตัวอักษรภาษาละตินในรูปภาพหรือวิดีโอ
ชื่อห้องสมุดcom.google.android.gms:play-services-mlkit-text-recognition
การใช้งานไลบรารีจะดาวน์โหลดแบบไดนามิกผ่านบริการ Google Play
ผลกระทบต่อขนาดแอป260KB
เวลาเริ่มต้นอาจต้องรอให้คลังดาวน์โหลดก่อน จึงจะใช้งานครั้งแรกได้
ประสิทธิภาพเรียลไทม์ในอุปกรณ์ส่วนใหญ่

ลองใช้งาน

  • ลองใช้แอปตัวอย่างเพื่อดูตัวอย่างการใช้งาน API นี้
  • ลองใช้โค้ดด้วยตนเองโดยใช้ codelab

ข้อควรทราบก่อนที่จะเริ่มต้น

  1. ในไฟล์ build.gradle ระดับโปรเจ็กต์ อย่าลืมใส่ที่เก็บ Maven ของ Google ทั้งใน buildscript และ allprojects
  2. เพิ่มทรัพยากร Dependency สําหรับไลบรารี Android ของ ML Kit ไปยังไฟล์ Gradle ระดับแอปของโมดูล ซึ่งปกติจะเป็น app/build.gradle
    dependencies {
      // ...
    
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:18.0.2'
    }
    
  3. ไม่บังคับแต่แนะนํา: คุณกําหนดค่าแอปให้ดาวน์โหลดโมเดล ML ลงในอุปกรณ์โดยอัตโนมัติได้หลังจากติดตั้งแอปจาก Play Store โดยเพิ่มประกาศต่อไปนี้ลงในไฟล์ AndroidManifest.xml ของแอป

    <application ...>
      ...
      <meta-data
          android:name="com.google.mlkit.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    หากไม่ได้เปิดใช้การดาวน์โหลดโมเดลเวลาติดตั้ง ระบบจะดาวน์โหลดโมเดลในครั้งแรกที่คุณเรียกใช้ตัวตรวจจับในอุปกรณ์ คําขอที่คุณสร้างก่อนที่จะดาวน์โหลดเสร็จสิ้นจะไม่มีผลลัพธ์ใดๆ

1. สร้างอินสแตนซ์ของ TextRecognizer

สร้างอินสแตนซ์ของ TextRecognizer

Kotlin

val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

Java

TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

2. เตรียมรูปภาพอินพุต

หากต้องการจดจําข้อความในรูปภาพ ให้สร้างออบเจ็กต์ InputImage จากBitmap, media.Image, ByteBuffer, อาร์เรย์ไบต์ หรือไฟล์ในอุปกรณ์ จากนั้นส่งออบเจ็กต์ InputImage ไปยังเมธอด processImage ของ TextRecognizer

คุณสามารถสร้างออบเจ็กต์ InputImage จากแหล่งที่มาต่างๆ ซึ่งอธิบายไว้ด้านล่าง

การใช้ media.Image

หากต้องการสร้างออบเจ็กต์ InputImage จากออบเจ็กต์ media.Image เช่น เมื่อคุณจับภาพจากกล้องของอุปกรณ์ ให้ส่งออบเจ็กต์ media.Image และการหมุนรูปภาพไปที่ InputImage.fromMediaImage()

หากคุณใช้ไลบรารี CameraX คลาส OnImageCapturedListener และ ImageAnalysis.Analyzer จะคํานวณค่าการหมุนเวียนสําหรับคุณ

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

หากไม่ได้ใช้ไลบรารีกล้องที่ให้ระดับการหมุนของรูปภาพ คุณจะคํานวณได้จากระดับการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์ ดังนี้

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

จากนั้นส่งออบเจ็กต์ media.Image และค่าองศาการหมุนเวียนไปยัง InputImage.fromMediaImage() ดังนี้

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

การใช้ URI ของไฟล์

หากต้องการสร้างออบเจ็กต์ InputImage จาก URI ของไฟล์ ให้ส่งบริบทของแอปและ URI ของไฟล์ไปยัง InputImage.fromFilePath() ซึ่งจะมีประโยชน์เมื่อคุณใช้ Intent ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรีของตน

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

การใช้ ByteBuffer หรือ ByteArray

หากต้องการสร้างออบเจ็กต์ InputImage จาก ByteBuffer หรือ ByteArray ให้คํานวณระดับการหมุนเวียนรูปภาพตามที่อธิบายไว้ก่อนหน้านี้สําหรับอินพุต media.Image จากนั้นสร้างออบเจ็กต์ InputImage ที่มีบัฟเฟอร์หรืออาร์เรย์ พร้อมด้วยความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ ดังนี้

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

การใช้ Bitmap

หากต้องการสร้างออบเจ็กต์ InputImage จากออบเจ็กต์ Bitmap โปรดประกาศต่อไปนี้

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

รูปภาพแทนออบเจ็กต์ Bitmap ร่วมกับองศาการหมุน

3. ประมวลผลรูปภาพ

ส่งรูปภาพไปยังเมธอด process ดังนี้

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. ดึงข้อความจากบล็อกของข้อความที่รู้จัก

หากการดําเนินการการจดจําข้อความสําเร็จ ระบบจะส่งออบเจ็กต์ Text ไปยัง Listener ที่ประสบความสําเร็จ ออบเจ็กต์ Text มีข้อความฉบับเต็มที่พบในรูปภาพและออบเจ็กต์ TextBlock จํานวน 0 รายการขึ้นไป

TextBlock แต่ละรายการแสดงถึงบล็อกข้อความสี่เหลี่ยมผืนผ้า ซึ่งมีออบเจ็กต์ Line อย่างน้อย 0 รายการ ออบเจ็กต์ Line แต่ละรายการแสดงถึงบรรทัดข้อความซึ่งมีออบเจ็กต์ Element อย่างน้อย 0 รายการ ออบเจ็กต์ Element แต่ละรายการแสดงถึงคําหรือเอนทิตีที่คล้ายกับคําซึ่งมีออบเจ็กต์ Symbol อย่างน้อย 0 รายการ ออบเจ็กต์ Symbol แต่ละรายการจะแสดงอักขระ ตัวเลข หรือเอนทิตีแบบคํา

สําหรับออบเจ็กต์ TextBlock, Line, Element และ Symbol แต่ละรายการ คุณจะได้รับข้อความที่รู้จักในภูมิภาค พิกัดขอบเขตของภูมิภาค และแอตทริบิวต์อื่นๆ อีกมากมาย เช่น ข้อมูลการหมุนเวียน คะแนนความเชื่อมั่น ฯลฯ

เช่น

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

หลักเกณฑ์เกี่ยวกับรูปภาพที่ป้อน

  • รูปภาพที่ป้อนต้องมีข้อความที่แสดงด้วยข้อมูลพิกเซลที่เพียงพอเพื่อให้ ML Kit จดจําข้อความได้อย่างแม่นยํา โดยหลักการแล้ว แต่ละอักขระควรมีขนาดอย่างน้อย 16x16 พิกเซล โดยทั่วไปแล้ว ประโยชน์ที่ได้คืออักขระมีขนาดใหญ่กว่า 24x24 พิกเซล

    เช่น รูปภาพขนาด 640x480 อาจทํางานได้ดีสําหรับสแกนนามบัตรที่ใช้เต็มความกว้างของรูปภาพ หากต้องการสแกนเอกสารที่พิมพ์บนกระดาษขนาดตัวอักษร คุณอาจต้องใช้รูปภาพขนาด 720x1280 พิกเซล

  • การโฟกัสรูปภาพที่ไม่ดีอาจส่งผลต่อการจดจําข้อความ หากไม่ได้รับผลการค้นหาที่ยอมรับได้ ให้ลองขอให้ผู้ใช้จับภาพอีกครั้ง

  • หากคุณจําข้อความในแอปพลิเคชันแบบเรียลไทม์ได้ ก็ควรคํานึงถึงขนาดโดยรวมของรูปภาพที่ป้อน รูปภาพขนาดเล็กประมวลผลได้เร็วขึ้น หากต้องการลดเวลาในการตอบสนอง ให้ตรวจสอบว่าข้อความใช้รูปภาพเป็นจํานวนมากที่สุดเท่าที่จะเป็นไปได้ และจับภาพที่ความละเอียดต่ําลง (โปรดคํานึงถึงข้อกําหนดความถูกต้องที่ระบุไว้ข้างต้น) ดูข้อมูลเพิ่มเติมได้ที่เคล็ดลับในการปรับปรุงประสิทธิภาพ

เคล็ดลับในการปรับปรุงประสิทธิภาพ

  • หากคุณใช้ API ของ Camera หรือ camera2 คุณจะควบคุมการใช้ตัวตรวจจับได้ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่ตัวตรวจจับทํางาน ให้วางเฟรมนั้น ดูตัวอย่างคลาส VisionProcessorBase ในแอปตัวอย่างคู่มือเริ่มต้นฉบับย่อ
  • หากคุณใช้ API CameraX โปรดตรวจสอบว่าได้ตั้งค่ากลยุทธ์ความกดดันเป็นค่าเริ่มต้น ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST ตัวเลือกนี้จะรับประกันว่าจะมีการส่งรูปภาพสําหรับการวิเคราะห์ข้อมูลเพียงครั้งละ 1 รูป หากมีการสร้างรูปภาพเพิ่มเติมเมื่อเครื่องมือวิเคราะห์ไม่ว่าง รูปภาพเหล่านั้นจะถูกทิ้งโดยอัตโนมัติและไม่อยู่ในคิวเพื่อนําส่ง เมื่อปิดรูปภาพที่จะวิเคราะห์แล้วโดยเรียก ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป
  • หากใช้เอาต์พุตของตัวตรวจจับเพื่อวางซ้อนกราฟิกบนรูปภาพอินพุต ก่อนอื่นให้ดูผลลัพธ์จาก ML Kit จากนั้นแสดงผลรูปภาพและวางซ้อนในขั้นตอนเดียว วิธีนี้จะแสดงผลบนแพลตฟอร์มจอแสดงผลเพียงครั้งเดียวสําหรับเฟรมอินพุตแต่ละเฟรม ดูตัวอย่างคลาส CameraSourcePreview และ GraphicOverlay ในแอปตัวอย่างเริ่มต้นอย่างรวดเร็ว
  • หากใช้ Camera2 API ให้จับภาพในรูปแบบ ImageFormat.YUV_420_888 หากคุณใช้ Camera API เวอร์ชันเก่า ให้จับภาพในรูปแบบ ImageFormat.NV21
  • ลองจับภาพที่ความละเอียดต่ําลง อย่างไรก็ตาม โปรดทราบว่าข้อกําหนดด้านขนาดของรูปภาพของ API นี้เช่นกัน