ML Kit มี SDK ที่เพิ่มประสิทธิภาพเพื่อการแบ่งกลุ่มเซลฟี
เนื้อหาเครื่องมือแบ่งกลุ่มเซลฟีจะลิงก์กับแอปของคุณแบบคงที่ ณ เวลาบิลด์ ซึ่งจะเพิ่มขนาดการดาวน์โหลดของแอปประมาณ 4.5 MB และเวลาในการตอบสนองของ API อาจ แตกต่างกันตั้งแต่ 25 ถึง 65 มิลลิวินาที ขึ้นอยู่กับขนาดรูปภาพที่ป้อน ซึ่งวัดใน Pixel 4.
ลองเลย
- ลองใช้แอปตัวอย่างเพื่อ ดูตัวอย่างการใช้ API นี้
ก่อนเริ่มต้น
- ในไฟล์
build.gradle
ระดับโปรเจ็กต์ อย่าลืมรวมที่เก็บ Maven ของ Google ไว้ทั้งในส่วนbuildscript
และallprojects
- เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit Android ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งปกติคือ
app/build.gradle
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. สร้างอินสแตนซ์ของ Segmenter
ตัวเลือกเครื่องมือแบ่งกลุ่ม
หากต้องการแบ่งกลุ่มรูปภาพ ให้สร้างอินสแตนซ์ของ Segmenter
ก่อนโดยระบุตัวเลือกต่อไปนี้
โหมดตัวตรวจจับ
Segmenter
ทำงานใน 2 โหมด โปรดเลือกวิธีที่ตรงกับกรณีการใช้งานของคุณ
STREAM_MODE (default)
โหมดนี้ออกแบบมาสำหรับการสตรีมเฟรมจากวิดีโอหรือกล้อง ในโหมดนี้ ตัวแบ่งกลุ่มจะใช้ประโยชน์จากผลลัพธ์จากเฟรมก่อนหน้าเพื่อให้ได้ผลลัพธ์การแบ่งกลุ่มที่ราบรื่นยิ่งขึ้น
SINGLE_IMAGE_MODE
โหมดนี้ได้รับการออกแบบมาสำหรับรูปภาพเดี่ยวๆ ที่ไม่มีความเกี่ยวข้องกัน ในโหมดนี้ ตัวแบ่งกลุ่มจะประมวลผลรูปภาพแต่ละรูปแบบแยกกัน โดยไม่ทำให้เฟรมดูราบเรียบ
เปิดใช้มาสก์ขนาดดิบ
ขอให้ตัวแบ่งกลุ่มแสดงผลมาสก์ขนาดดิบที่ตรงกับขนาดเอาต์พุตของโมเดล
ขนาดมาสก์ดิบ (เช่น 256x256) มักจะเล็กกว่าขนาดรูปภาพอินพุต โปรดโทรติดต่อ SegmentationMask#getWidth()
และ SegmentationMask#getHeight()
เพื่อขอขนาดมาสก์เมื่อเปิดใช้ตัวเลือกนี้
หากไม่ระบุตัวเลือกนี้ ตัวแบ่งกลุ่มจะปรับขนาดมาสก์ดิบใหม่ให้ตรงกับขนาดรูปภาพอินพุต พิจารณาใช้ตัวเลือกนี้หากต้องการใช้ตรรกะการปรับขนาดที่กำหนดเองหรือไม่จำเป็นต้องปรับขนาดสำหรับกรณีการใช้งาน
ระบุตัวเลือกตัวแบ่งกลุ่ม:
Kotlin
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
Java
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
สร้างอินสแตนซ์ของ Segmenter
ส่งผ่านตัวเลือกที่คุณระบุ:
Kotlin
val segmenter = Segmentation.getClient(options)
Java
Segmenter segmenter = Segmentation.getClient(options);
2. เตรียมรูปภาพอินพุต
หากต้องการแบ่งกลุ่มรูปภาพ ให้สร้างออบเจ็กต์ InputImage
จากอาร์เรย์ Bitmap
, media.Image
, ByteBuffer
, ไบต์ หรือไฟล์ใน
อุปกรณ์
คุณสามารถสร้างInputImage
จากแหล่งที่มาต่างๆ ซึ่งอธิบายไว้ด้านล่าง
กำลังใช้media.Image
วิธีสร้าง InputImage
จากออบเจ็กต์ media.Image
เช่น เมื่อคุณจับภาพจาก
กล้องของอุปกรณ์ ส่งวัตถุ media.Image
และ
การหมุนเวียนเป็น InputImage.fromMediaImage()
หากคุณใช้แท็ก
ไลบรารี CameraX, OnImageCapturedListener
และ
ImageAnalysis.Analyzer
คลาสจะคำนวณค่าการหมุนเวียน
สำหรับคุณ
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
ถ้าคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้องศาการหมุนของภาพ คุณ สามารถคำนวณได้จากระดับการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
จากนั้นส่งออบเจ็กต์ media.Image
และ
ค่าองศาการหมุนเป็น InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
การใช้ URI ของไฟล์
วิธีสร้าง InputImage
จาก URI ของไฟล์ แล้วส่งบริบทของแอปและ URI ของไฟล์ไปยัง
InputImage.fromFilePath()
วิธีนี้มีประโยชน์เมื่อคุณ
ใช้ Intent ACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือก
รูปภาพจากแอปแกลเลอรี
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
กำลังใช้ByteBuffer
หรือByteArray
วิธีสร้าง InputImage
จาก ByteBuffer
หรือ ByteArray
ให้คำนวณรูปภาพก่อน
องศาการหมุนตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image
จากนั้นสร้างออบเจ็กต์ InputImage
พร้อมบัฟเฟอร์หรืออาร์เรย์ ร่วมกับรูปภาพ
ความสูง ความกว้าง รูปแบบการเข้ารหัสสี และระดับการหมุน:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
กำลังใช้Bitmap
วิธีสร้าง InputImage
จากออบเจ็กต์ Bitmap
ให้ทำการประกาศต่อไปนี้
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
รูปภาพจะแสดงเป็นวัตถุ Bitmap
ร่วมกับองศาการหมุน
3. ประมวลผลรูปภาพ
ส่งต่อออบเจ็กต์ InputImage
ที่เตรียมไว้ไปยังเมธอด process
ของ Segmenter
Kotlin
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. รับผลการแบ่งกลุ่ม
ผลลัพธ์ที่ได้การแบ่งกลุ่มมีดังนี้
Kotlin
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
Java
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
สำหรับตัวอย่างแบบเต็มของวิธีการใช้ผลการแบ่งกลุ่มลูกค้า โปรดดูที่ ตัวอย่างการเริ่มต้นอย่างรวดเร็ว ML Kit
เคล็ดลับในการปรับปรุงประสิทธิภาพ
คุณภาพของผลลัพธ์จะขึ้นอยู่กับคุณภาพของรูปภาพที่ป้อน ดังนี้
- รูปภาพควรมีขนาดอย่างน้อย 256x256 พิกเซล เพื่อให้ ML Kit ได้ผลลัพธ์การแบ่งกลุ่มลูกค้าที่แม่นยำ
- การโฟกัสของรูปภาพไม่ดีอาจส่งผลต่อความแม่นยำด้วย ถ้าคุณไม่ได้ผลลัพธ์ที่ยอมรับได้ โปรดขอให้ผู้ใช้ถ่ายภาพอีกครั้ง
หากคุณต้องการใช้การแบ่งกลุ่มในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามหลักเกณฑ์ต่อไปนี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด
- ใช้
STREAM_MODE
- ลองจับภาพที่ความละเอียดต่ำลง อย่างไรก็ตาม โปรดคำนึงถึงข้อกำหนดเกี่ยวกับขนาดรูปภาพของ API นี้ด้วย
- ลองเปิดใช้ตัวเลือกมาสก์ขนาดดิบและรวมตรรกะการปรับขนาดทั้งหมดเข้าด้วยกัน ตัวอย่างเช่น แทนที่จะปล่อยให้ API ปรับขนาดมาสก์ใหม่ให้ตรงกับขนาดรูปภาพที่ป้อนก่อน แล้วจึงปรับขนาดอีกครั้งเพื่อให้ตรงกับขนาดมุมมองสำหรับจอแสดงผล ให้ขอมาสก์ขนาดดิบและรวมทั้ง 2 ขั้นตอนนี้เป็นขั้นตอนเดียว
- หากคุณใช้แท็ก
Camera
หรือcamera2
API, รวมถึงควบคุมการเรียกไปที่ตัวตรวจจับ หากวิดีโอใหม่ เฟรมพร้อมใช้งานขณะที่ตัวตรวจจับกำลังทำงาน ให้วางเฟรม โปรดดูVisionProcessorBase
ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็วสำหรับตัวอย่าง - หากคุณใช้
CameraX
API ตรวจสอบว่ากลยุทธ์ Backpressure เป็นค่าเริ่มต้นImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
วิธีนี้ช่วยให้มั่นใจว่าระบบจะส่งรูปภาพมาวิเคราะห์เพียงครั้งละ 1 รูป ถ้ารูปภาพเพิ่มเติมคือ ผลิตขณะที่เครื่องมือวิเคราะห์ไม่ว่าง ข้อมูลจะหายไปโดยอัตโนมัติและไม่ได้เข้าคิว เมื่อปิดการวิเคราะห์รูปภาพด้วยการเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป - หากคุณใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิก
รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ
ซ้อนทับในขั้นตอนเดียว การดำเนินการนี้จะแสดงผลบนพื้นผิวจอแสดงผล
เพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม โปรดดู
CameraSourcePreview
และ คลาสGraphicOverlay
ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็วสำหรับตัวอย่าง - หากคุณใช้ Camera2 API ให้จับภาพใน
ImageFormat.YUV_420_888
หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพในImageFormat.NV21