ML Kit provides two optimized SDKs for pose detection.
SDK Name | pose-detection | pose-detection-accurate |
---|---|---|
Implementation | Code and assets are statically linked to your app at build time. | Code and assets are statically linked to your app at build time. |
App size impact (including code and assets) | ~10.1MB | ~13.3MB |
Performance | Pixel 3XL: ~30FPS | Pixel 3XL: ~23FPS with CPU, ~30FPS with GPU |
Try it out
- Play around with the sample app to see an example usage of this API.
Before you begin
- In your project-level
build.gradle
file, make sure to include Google's Maven repository in both yourbuildscript
andallprojects
sections. Add the dependencies for the ML Kit Android libraries to your module's app-level gradle file, which is usually
app/build.gradle
:dependencies { // If you want to use the base sdk implementation 'com.google.mlkit:pose-detection:18.0.0-beta5' // If you want to use the accurate sdk implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5' }
1. Create an instance of PoseDetector
PoseDetector
options
To detect a pose in an image, first create an instance of PoseDetector
and
optionally specify the detector settings.
Detection mode
The PoseDetector
operates in two detection modes. Be sure you choose the one that matches
your use case.
STREAM_MODE
(default)- The pose detector will first detect the most prominent person in the image and then run pose detection. In subsequent frames, the person-detection step will not be conducted unless the person becomes obscured or is no longer detected with high confidence. The pose detector will attempt to track the most-prominent person and return their pose in each inference. This reduces latency and smooths detection. Use this mode when you want to detect pose in a video stream.
SINGLE_IMAGE_MODE
- The pose detector will detect a person and then run pose detection. The person-detection step will run for every image, so latency will be higher, and there is no person-tracking. Use this mode when using pose detection on static images or where tracking is not desired.
Hardware config
The PoseDetector
supports multiple hardware configurations for optimizing
performance:
CPU
: run the detector by using CPU onlyCPU_GPU
: run the detector by using both CPU and GPU
When building the detector options, you can use the API
setPreferredHardwareConfigs
to control the hardware selection. By default,
all hardware configurations are set as preferred.
ML Kit will take availability, stability, correctness and latency of each config
into consideration and pick the best one from the preferred configs. If none of
the preferred configs is applicable, the CPU
config will be used automatically
as fallback. ML Kit will do these checks and related preparation in a
non-blocking way before enabling any acceleration, so it is most likely the
first time your user runs the detector, it will use CPU
. After all the
preparation finishes, the best config will be used in the following runs.
Example usages of setPreferredHardwareConfigs
:
- To let ML Kit pick the best config, do not call this API.
- If you don't want to enable any acceleration, pass in only
CPU
. - If you want to use GPU to offload CPU even if GPU could be slower, pass
in only
CPU_GPU
.
Specify the pose detector options:
Kotlin
// Base pose detector with streaming frames, when depending on the pose-detection sdk val options = PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build() // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk val options = AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build()
Java
// Base pose detector with streaming frames, when depending on the pose-detection sdk PoseDetectorOptions options = new PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build(); // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk AccuratePoseDetectorOptions options = new AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build();
Finally, create an instance of PoseDetector
. Pass the options you specified:
Kotlin
val poseDetector = PoseDetection.getClient(options)
Java
PoseDetector poseDetector = PoseDetection.getClient(options);
2. Prepare the input image
To detect poses in an image, create an InputImage
object
from either a Bitmap
, media.Image
, ByteBuffer
, byte array, or a file on
the device. Then, pass the InputImage
object to the
PoseDetector
.
For pose detection, you should use an image with dimensions of at least 480x360 pixels. If you are detecting poses in real time, capturing frames at this minimum resolution can help reduce latency.
You can create an InputImage
object from different sources, each is explained below.
Using a media.Image
To create an InputImage
object from a media.Image
object, such as when you capture an image from a
device's camera, pass the media.Image
object and the image's
rotation to InputImage.fromMediaImage()
.
If you use the
CameraX library, the OnImageCapturedListener
and
ImageAnalysis.Analyzer
classes calculate the rotation value
for you.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
If you don't use a camera library that gives you the image's rotation degree, you can calculate it from the device's rotation degree and the orientation of camera sensor in the device:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Then, pass the media.Image
object and the
rotation degree value to InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Using a file URI
To create an InputImage
object from a file URI, pass the app context and file URI to
InputImage.fromFilePath()
. This is useful when you
use an ACTION_GET_CONTENT
intent to prompt the user to select
an image from their gallery app.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Using a ByteBuffer
or ByteArray
To create an InputImage
object from a ByteBuffer
or a ByteArray
, first calculate the image
rotation degree as previously described for media.Image
input.
Then, create the InputImage
object with the buffer or array, together with image's
height, width, color encoding format, and rotation degree:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Using a Bitmap
To create an InputImage
object from a Bitmap
object, make the following declaration:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
The image is represented by a Bitmap
object together with rotation degrees.
3. Process the image
Pass the prepared InputImage
object to the PoseDetector
's process
method.
Kotlin
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener( new OnSuccessListener<Pose>() { @Override public void onSuccess(Pose pose) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Get information about the detected pose
If a person is detected in the image, the pose detection API returns a Pose
object with 33 PoseLandmark
s.
If the person was not completely inside the image, the model assigns the missing landmarks coordinates outside the frame and gives them low InFrameConfidence values.
If no person was detected in the frame the Pose
object contains no PoseLandmark
s.
Kotlin
// Get all PoseLandmarks. If no person was detected, the list will be empty val allPoseLandmarks = pose.getAllPoseLandmarks() // Or get specific PoseLandmarks individually. These will all be null if no person // was detected val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER) val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER) val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW) val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW) val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST) val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST) val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP) val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP) val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE) val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE) val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE) val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE) val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY) val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY) val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX) val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX) val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB) val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB) val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL) val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL) val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX) val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX) val nose = pose.getPoseLandmark(PoseLandmark.NOSE) val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER) val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE) val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER) val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER) val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE) val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER) val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR) val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR) val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH) val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)
Java
// Get all PoseLandmarks. If no person was detected, the list will be empty List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks(); // Or get specific PoseLandmarks individually. These will all be null if no person // was detected PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER); PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER); PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW); PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW); PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST); PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST); PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP); PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP); PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE); PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE); PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE); PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE); PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY); PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY); PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX); PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX); PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB); PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB); PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL); PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL); PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX); PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX); PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE); PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER); PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE); PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER); PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER); PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE); PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER); PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR); PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR); PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH); PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);
Tips to improve performance
The quality of your results depends on the quality of the input image:
- For ML Kit to accurately detect pose, the person in the image should be represented by sufficient pixel data; for best performance, the subject should be at least 256x256 pixels.
- If you detect pose in a real-time application, you might also want to consider the overall dimensions of the input images. Smaller images can be processed faster, so to reduce latency, capture images at lower resolutions, but keep in mind the above resolution requirements and ensure that the subject occupies as much of the image as possible.
- Poor image focus can also impact accuracy. If you don't get acceptable results, ask the user to recapture the image.
If you want to use pose detection in a real-time application, follow these guidelines to achieve the best framerates:
- Use the base pose-detection sdk and
STREAM_MODE
. - Consider capturing images at a lower resolution. However, also keep in mind this API's image dimension requirements.
- If you use the
Camera
orcamera2
API, throttle calls to the detector. If a new video frame becomes available while the detector is running, drop the frame. See theVisionProcessorBase
class in the quickstart sample app for an example. - If you use the
CameraX
API, be sure that backpressure strategy is set to its default valueImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. This guarantees only one image will be delivered for analysis at a time. If more images are produced when the analyzer is busy, they will be dropped automatically and not queued for delivery. Once the image being analyzed is closed by calling ImageProxy.close(), the next latest image will be delivered. - If you use the output of the detector to overlay graphics on
the input image, first get the result from ML Kit, then render the image
and overlay in a single step. This renders to the display surface
only once for each input frame. See the
CameraSourcePreview
andGraphicOverlay
classes in the quickstart sample app for an example. - If you use the Camera2 API, capture images in
ImageFormat.YUV_420_888
format. If you use the older Camera API, capture images inImageFormat.NV21
format.
Next steps
- To learn how to use pose landmarks to classify poses, see Pose Classification Tips.