Détecter des postures avec ML Kit sur Android

ML Kit fournit deux SDK optimisés pour la détection des postures.

Nom du SDKdétection des posturesdétection-de-pose-précise
ImplémentationLe code et les éléments sont associés de manière statique à votre application au moment de la compilation.Le code et les éléments sont associés de manière statique à votre application au moment de la compilation.
Impact sur la taille de l'application (y compris le code et les composants)~ 10,1 Mo~ 13,3 Mo
PerformancesPixel 3XL: ~30FPSPixel 3XL: ~23 FPS avec processeur et ~30 FPS avec GPU

Essayer

Avant de commencer

  1. Dans le fichier build.gradle au niveau du projet, veillez à inclure le dépôt Maven de Google dans vos sections buildscript et allprojects.
  2. Ajoutez les dépendances des bibliothèques Android de ML Kit au fichier Gradle au niveau de l'application de votre module, qui est généralement app/build.gradle:

    dependencies {
      // If you want to use the base sdk
      implementation 'com.google.mlkit:pose-detection:18.0.0-beta3'
      // If you want to use the accurate sdk
      implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta3'
    }
    

1. Créer une instance de PoseDetector

Options PoseDetector

Pour détecter une posture dans une image, commencez par créer une instance de PoseDetector et spécifiez éventuellement les paramètres de détecteur.

Mode de détection

PoseDetector fonctionne avec deux modes de détection. Veillez à choisir celle qui correspond à votre cas d'utilisation.

STREAM_MODE (par défaut)
Le détecteur de postures détecte d'abord la personne la plus visible sur l'image, puis lance la détection des postures. Dans les images suivantes, l'étape de détection de personnes n'est effectuée que si la personne est masquée ou si elle n'est plus détectée avec un niveau de confiance élevé. Le détecteur de postures tente de suivre la personne la plus visible et de renvoyer sa posture à chaque inférence. Cela réduit la latence et fluidifie la détection. Utilisez ce mode lorsque vous souhaitez détecter une pose dans un flux vidéo.
SINGLE_IMAGE_MODE
Le détecteur de postures détecte une personne, puis lance la détection des postures. L'étape de détection des personnes s'exécutera pour chaque image, la latence sera donc plus élevée et il n'y aura pas de suivi des personnes. Utilisez ce mode lorsque vous utilisez la détection des postures sur des images statiques ou lorsque le suivi n'est pas souhaité.

Configuration matérielle

PoseDetector accepte plusieurs configurations matérielles pour optimiser les performances:

  • CPU: exécuter le détecteur en utilisant uniquement le processeur.
  • CPU_GPU: exécuter le détecteur en utilisant à la fois le processeur et le GPU

Lorsque vous créez les options de détecteur, vous pouvez utiliser l'API setPreferredHardwareConfigs pour contrôler la sélection du matériel. Par défaut, toutes les configurations matérielles sont définies comme étant à privilégier.

ML Kit tient compte de la disponibilité, de la stabilité, de l'exactitude et de la latence de chaque configuration, et choisit la meilleure parmi les configurations préférées. Si aucune des configurations préférées n'est applicable, la configuration CPU est utilisée automatiquement en remplacement. ML Kit effectue ces vérifications et la préparation associée de manière non bloquante avant d'activer toute accélération. Il est donc très probable que la première fois que l'utilisateur exécute le détecteur, il utilise CPU. Une fois la préparation terminée, la meilleure configuration sera utilisée dans les exécutions suivantes.

Exemples d'utilisation de setPreferredHardwareConfigs:

  • Pour permettre à ML Kit de choisir la meilleure configuration, n'appelez pas cette API.
  • Si vous ne souhaitez activer aucune accélération, ne transmettez que CPU.
  • Si vous souhaitez utiliser le GPU pour décharger le processeur, même si celui-ci peut être plus lent, ne transmettez que CPU_GPU.

Spécifiez les options du détecteur de postures:

Kotlin

// Base pose detector with streaming frames, when depending on the pose-detection sdk
val options = PoseDetectorOptions.Builder()
    .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
    .build()

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
val options = AccuratePoseDetectorOptions.Builder()
    .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
    .build()

Java

// Base pose detector with streaming frames, when depending on the pose-detection sdk
PoseDetectorOptions options =
   new PoseDetectorOptions.Builder()
       .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
       .build();

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
AccuratePoseDetectorOptions options =
   new AccuratePoseDetectorOptions.Builder()
       .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
       .build();

Enfin, créez une instance de PoseDetector. Transmettez les options que vous avez spécifiées:

Kotlin

val poseDetector = PoseDetection.getClient(options)

Java

PoseDetector poseDetector = PoseDetection.getClient(options);

2. Préparer l'image d'entrée

Pour détecter les postures dans une image, créez un objet InputImage à partir d'un Bitmap, media.Image, ByteBuffer, d'un tableau d'octets ou d'un fichier sur l'appareil. Transmettez ensuite l'objet InputImage à PoseDetector.

Pour la détection des postures, vous devez utiliser une image d'au moins 480 x 360 pixels. Si vous détectez des postures en temps réel, la capture d'images à cette résolution minimale peut contribuer à réduire la latence.

Vous pouvez créer un objet InputImage à partir de différentes sources, expliquées ci-dessous.

Utiliser un media.Image

Pour créer un objet InputImage à partir d'un objet media.Image, par exemple lorsque vous capturez une image avec l'appareil photo d'un appareil, transmettez l'objet media.Image et la rotation de l'image à InputImage.fromMediaImage().

Si vous utilisez la bibliothèque Camera Camera, les classes OnImageCapturedListener et ImageAnalysis.Analyzer calculent automatiquement la valeur de rotation.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si vous n'utilisez pas de bibliothèque d'appareils photo qui fournit le degré de rotation de l'image, vous pouvez le calculer à partir du degré de rotation de l'appareil et de l'orientation du capteur de l'appareil photo de l'appareil:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Transmettez ensuite l'objet media.Image et la valeur du degré de rotation à InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utiliser un URI de fichier

Pour créer un objet InputImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichier à InputImage.fromFilePath(). Cela est utile lorsque vous utilisez un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image dans son application Galerie.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utiliser un ByteBuffer ou un ByteArray

Pour créer un objet InputImage à partir d'un ByteBuffer ou d'un ByteArray, commencez par calculer le degré de rotation de l'image comme décrit précédemment pour l'entrée media.Image. Créez ensuite l'objet InputImage avec le tampon ou le tableau, ainsi que la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation de l'image:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utiliser un Bitmap

Pour créer un objet InputImage à partir d'un objet Bitmap, effectuez la déclaration suivante:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'image est représentée par un objet Bitmap accompagné de degrés de rotation.

3. Traiter l'image

Transmettez l'objet InputImage préparé à la méthode process de PoseDetector.

Kotlin

Task<Pose> result = poseDetector.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

Java

Task<Pose> result =
        poseDetector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<Pose>() {
                            @Override
                            public void onSuccess(Pose pose) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Obtenir des informations sur la posture détectée

Si une personne est détectée sur l'image, l'API de détection des postures renvoie un objet Pose avec 33 PoseLandmarks.

Si la personne n'était pas complètement à l'intérieur de l'image, le modèle attribue les coordonnées des points de repère manquants en dehors du cadre et leur attribue des valeurs InFrameConfidence faibles.

Si aucune personne n'a été détectée dans le frame, l'objet Pose ne contient aucun élément PoseLandmark.

Kotlin

// Get all PoseLandmarks. If no person was detected, the list will be empty
val allPoseLandmarks = pose.getAllPoseLandmarks()

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER)
val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER)
val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW)
val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW)
val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST)
val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST)
val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP)
val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP)
val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE)
val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE)
val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE)
val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE)
val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY)
val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY)
val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX)
val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX)
val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB)
val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB)
val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL)
val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL)
val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX)
val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX)
val nose = pose.getPoseLandmark(PoseLandmark.NOSE)
val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER)
val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE)
val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER)
val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER)
val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE)
val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER)
val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR)
val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR)
val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH)
val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)

Java

// Get all PoseLandmarks. If no person was detected, the list will be empty
List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks();

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER);
PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER);
PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW);
PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW);
PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST);
PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST);
PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP);
PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP);
PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE);
PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE);
PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE);
PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE);
PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY);
PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY);
PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX);
PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX);
PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB);
PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB);
PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL);
PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL);
PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX);
PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX);
PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE);
PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER);
PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE);
PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER);
PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER);
PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE);
PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER);
PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR);
PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR);
PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH);
PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);

Conseils pour améliorer les performances

La qualité des résultats dépend de la qualité de l'image d'entrée:

  • Pour que ML Kit puisse détecter précisément la pose, la personne sur l'image doit être représentée par une quantité suffisante de données de pixels. Pour des performances optimales, le sujet doit faire au moins 256 x 256 pixels.
  • Si vous détectez une posture dans une application en temps réel, vous pouvez également prendre en compte les dimensions globales des images d'entrée. Les images plus petites peuvent être traitées plus rapidement. Par conséquent, pour réduire la latence, capturez des images à des résolutions inférieures, mais tenez compte des exigences de résolution ci-dessus et assurez-vous que le sujet occupe la plus grande partie de l'image possible.
  • Une mauvaise mise au point peut aussi avoir un impact sur la précision. Si vous n'obtenez pas de résultats acceptables, demandez à l'utilisateur de reprendre l'image.

Si vous souhaitez utiliser la détection des postures dans une application en temps réel, suivez ces consignes pour obtenir les meilleures fréquences d'images:

  • Utilisez le SDK de base de détection des postures et STREAM_MODE.
  • Envisagez de capturer des images à une résolution inférieure. Toutefois, gardez également à l'esprit les exigences de cette API concernant les dimensions des images.
  • Si vous utilisez l'API Camera ou camera2, limitez les appels au détecteur. Si une nouvelle image vidéo devient disponible pendant que le détecteur est en cours d'exécution, déposez l'image. Consultez la classe VisionProcessorBase dans l'exemple d'application de démarrage rapide pour voir un exemple.
  • Si vous utilisez l'API CameraX, assurez-vous que la stratégie de contre-pression est définie sur sa valeur par défaut ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Cela garantit qu'une seule image à la fois sera diffusée pour analyse. Si davantage d'images sont produites alors que l'analyseur est occupé, elles seront automatiquement supprimées et ne seront pas mises en file d'attente pour la diffusion. Une fois l'image analysée fermée en appelant ImageProxy.close(), la dernière image suivante sera diffusée.
  • Si vous utilisez la sortie du détecteur pour superposer des éléments graphiques à l'image d'entrée, obtenez d'abord le résultat de ML Kit, puis affichez l'image et la superposition en une seule étape. La surface d'affichage n'est donc rendue qu'une seule fois pour chaque image d'entrée. Consultez les classes CameraSourcePreview et GraphicOverlay dans l'exemple d'application de démarrage rapide pour voir un exemple.
  • Si vous utilisez l'API Camera2, capturez des images au format ImageFormat.YUV_420_888. Si vous utilisez l'ancienne API Camera, capturez des images au format ImageFormat.NV21.

Étapes suivantes