Oznaczanie obrazów za pomocą ML Kit na iOS

Za pomocą ML Kit możesz oznaczać etykietami obiekty rozpoznane na obrazie. Model domyślny udostępniane z ML Kit obsługuje ponad 400 różnych etykiet.

Wypróbuj

Zanim zaczniesz

  1. W pliku Podfile umieść te pody ML Kit:
    pod 'GoogleMLKit/ImageLabeling', '15.5.0'
    
  2. Po zainstalowaniu lub zaktualizowaniu podów projektu otwórz projekt Xcode za pomocą .xcworkspace ML Kit jest obsługiwany w Xcode w wersji 12.4 lub nowszej.

Teraz możesz dodać etykiety do obrazów.

1. Przygotowywanie obrazu wejściowego

Utwórz obiekt VisionImage za pomocą UIImage lub CMSampleBuffer.

Jeśli używasz UIImage, wykonaj te czynności:

  • Utwórz obiekt VisionImage za pomocą UIImage. Pamiętaj, by określić prawidłowy .orientation.

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

Jeśli używasz CMSampleBuffer, wykonaj te czynności:

  • Określ orientację danych zdjęć zawartych w pliku CMSampleBuffer

    Aby sprawdzić orientację obrazu:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Utwórz obiekt VisionImage za pomocą CMSampleBuffer obiekt i orientacja:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

2. Skonfiguruj i uruchom osobę oznaczającą obrazy

Aby oznaczyć etykietami obiekty na obrazie, przekaż obiekt VisionImage do funkcji Metoda processImage() użytkownika ImageLabeler.

  1. Najpierw pobierz instancję ImageLabeler.

Swift

let labeler = ImageLabeler.imageLabeler()

// Or, to set the minimum confidence required:
// let options = ImageLabelerOptions()
// options.confidenceThreshold = 0.7
// let labeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKImageLabeler *labeler = [MLKImageLabeler imageLabeler];

// Or, to set the minimum confidence required:
// MLKImageLabelerOptions *options =
//         [[MLKImageLabelerOptions alloc] init];
// options.confidenceThreshold = 0.7;
// MLKImageLabeler *labeler =
//         [MLKImageLabeler imageLabelerWithOptions:options];
  1. Następnie przekaż obraz do metody processImage():

Swift

labeler.process(image) { labels, error in
    guard error == nil, let labels = labels else { return }

    // Task succeeded.
    // ...
}

Objective-C

[labeler processImage:image
completion:^(NSArray *_Nullable labels,
            NSError *_Nullable error) {
   if (error != nil) { return; }

   // Task succeeded.
   // ...
}];

3. Uzyskiwanie informacji o obiektach oznaczonych etykietami

Jeśli oznaczenie obrazów zostanie oznaczone etykietami, moduł obsługi uzupełniania otrzyma tablicę ImageLabel obiekty. Każdy obiekt ImageLabel reprezentuje coś, co oznaczone etykietą na zdjęciu. Model podstawowy obsługuje ponad 400 różnych etykiet. Możesz uzyskać opis tekstowy każdej etykiety i zindeksować wszystkie etykiety obsługiwane przez model oraz wskaźnik ufności dopasowania. Na przykład:

Swift

for label in labels {
    let labelText = label.text
    let confidence = label.confidence
    let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
   NSString *labelText = label.text;
   float confidence = label.confidence;
   NSInteger index = label.index;
}

Wskazówki dotyczące poprawy skuteczności w czasie rzeczywistym

Jeśli chcesz oznaczać obrazy w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi instrukcjami wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:

  • Do przetwarzania klatek wideo używaj synchronicznego interfejsu API results(in:) narzędzia do oznaczania obrazów. Zadzwoń do nas tę metodę z AVCaptureVideoDataOutputSampleBufferDelegate . captureOutput(_, didOutput:from:), aby synchronicznie pobierać wyniki dotyczące danego filmu ramki. Zachowaj AVCaptureVideoDataOutput: alwaysDiscardsLateVideoFrames jako true, aby ograniczyć wywołania osoby oznaczającej obrazy. Jeśli nowy klatka wideo będzie dostępna podczas działania narzędzia do oznaczania obrazów, a zostanie ona usunięta.
  • Jeśli używasz danych wyjściowych twórcy etykiet do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą przetworzoną ramkę wejściową. Zobacz updatePreviewOverlayViewWithLastFrame. znajdziesz na przykład w krótkim wprowadzeniu do korzystania z ML Kit.