Za pomocą ML Kit możesz oznaczać etykietami obiekty rozpoznane na obrazie. Model domyślny udostępniane z ML Kit obsługuje ponad 400 różnych etykiet.
Wypróbuj
- Wypróbuj przykładową aplikację, aby: zobaczysz przykład użycia tego interfejsu API.
Zanim zaczniesz
- W pliku Podfile umieść te pody ML Kit:
pod 'GoogleMLKit/ImageLabeling', '15.5.0'
- Po zainstalowaniu lub zaktualizowaniu podów projektu otwórz projekt Xcode za pomocą
.xcworkspace
ML Kit jest obsługiwany w Xcode w wersji 12.4 lub nowszej.
Teraz możesz dodać etykiety do obrazów.
1. Przygotowywanie obrazu wejściowego
Utwórz obiekt VisionImage
za pomocą UIImage
lub
CMSampleBuffer
.
Jeśli używasz UIImage
, wykonaj te czynności:
- Utwórz obiekt
VisionImage
za pomocąUIImage
. Pamiętaj, by określić prawidłowy.orientation
.Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Jeśli używasz CMSampleBuffer
, wykonaj te czynności:
-
Określ orientację danych zdjęć zawartych w pliku
CMSampleBuffer
Aby sprawdzić orientację obrazu:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Utwórz obiekt
VisionImage
za pomocąCMSampleBuffer
obiekt i orientacja:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
2. Skonfiguruj i uruchom osobę oznaczającą obrazy
Aby oznaczyć etykietami obiekty na obrazie, przekaż obiektVisionImage
do funkcji
Metoda processImage()
użytkownika ImageLabeler
.
- Najpierw pobierz instancję
ImageLabeler
.
Swift
let labeler = ImageLabeler.imageLabeler() // Or, to set the minimum confidence required: // let options = ImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKImageLabeler *labeler = [MLKImageLabeler imageLabeler]; // Or, to set the minimum confidence required: // MLKImageLabelerOptions *options = // [[MLKImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // MLKImageLabeler *labeler = // [MLKImageLabeler imageLabelerWithOptions:options];
- Następnie przekaż obraz do metody
processImage()
:
Swift
labeler.process(image) { labels, error in guard error == nil, let labels = labels else { return } // Task succeeded. // ... }
Objective-C
[labeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (error != nil) { return; } // Task succeeded. // ... }];
3. Uzyskiwanie informacji o obiektach oznaczonych etykietami
Jeśli oznaczenie obrazów zostanie oznaczone etykietami, moduł obsługi uzupełniania otrzyma tablicę
ImageLabel
obiekty. Każdy obiekt ImageLabel
reprezentuje coś, co
oznaczone etykietą na zdjęciu. Model podstawowy obsługuje ponad 400 różnych etykiet.
Możesz uzyskać opis tekstowy każdej etykiety i zindeksować wszystkie etykiety obsługiwane przez
model oraz wskaźnik ufności dopasowania. Na przykład:
Swift
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
Objective-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
Wskazówki dotyczące poprawy skuteczności w czasie rzeczywistym
Jeśli chcesz oznaczać obrazy w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi instrukcjami wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:
- Do przetwarzania klatek wideo używaj synchronicznego interfejsu API
results(in:)
narzędzia do oznaczania obrazów. Zadzwoń do nas tę metodę zAVCaptureVideoDataOutputSampleBufferDelegate
.captureOutput(_, didOutput:from:)
, aby synchronicznie pobierać wyniki dotyczące danego filmu ramki. ZachowajAVCaptureVideoDataOutput
:alwaysDiscardsLateVideoFrames
jakotrue
, aby ograniczyć wywołania osoby oznaczającej obrazy. Jeśli nowy klatka wideo będzie dostępna podczas działania narzędzia do oznaczania obrazów, a zostanie ona usunięta. - Jeśli używasz danych wyjściowych twórcy etykiet do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą przetworzoną ramkę wejściową. Zobacz updatePreviewOverlayViewWithLastFrame. znajdziesz na przykład w krótkim wprowadzeniu do korzystania z ML Kit.