برچسب گذاری تصاویر با ML Kit در اندروید

می توانید از کیت ML برای برچسب گذاری اشیاء شناسایی شده در یک تصویر استفاده کنید. مدل پیش فرض ارائه شده با کیت ML از بیش از 400 برچسب مختلف پشتیبانی می کند.

ویژگی تفکیک شده همراه
پیاده سازی مدل به صورت پویا از طریق خدمات Google Play دانلود می شود. مدل به صورت ایستا به شما در زمان ساخت مرتبط است.
اندازه برنامه افزایش حجم حدود 200 کیلوبایت حدود 5.7 مگابایت افزایش حجم.
زمان اولیه سازی ممکن است قبل از اولین استفاده باید منتظر بمانید تا مدل دانلود شود. مدل فورا موجود است

آن را امتحان کنید

قبل از شروع

  1. در فایل build.gradle در سطح پروژه خود، مطمئن شوید که مخزن Maven Google را در هر دو بخش buildscript و allprojects خود قرار دهید.

  2. وابستگی های کتابخانه های اندروید ML Kit را به فایل gradle سطح برنامه ماژول خود اضافه کنید، که معمولا app/build.gradle است. یکی از وابستگی های زیر را بر اساس نیاز خود انتخاب کنید:

    برای بسته‌بندی مدل با برنامه‌تان:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    برای استفاده از مدل در خدمات Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. اگر انتخاب کردید که از مدل در خدمات Google Play استفاده کنید ، می‌توانید برنامه خود را طوری پیکربندی کنید که پس از نصب برنامه از فروشگاه Play، مدل را به‌طور خودکار در دستگاه دانلود کنید. برای انجام این کار، اعلان زیر را به فایل AndroidManifest.xml برنامه خود اضافه کنید:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    همچنین می‌توانید صریحاً در دسترس بودن مدل را بررسی کنید و از طریق سرویس‌های Google Play ModuleInstallClient API درخواست دانلود کنید.

    اگر دانلودهای مدل در زمان نصب را فعال نکنید یا دانلود صریح درخواست نکنید، اولین باری که برچسب‌زن را اجرا می‌کنید، مدل دانلود می‌شود. درخواست‌هایی که قبل از تکمیل دانلود ارائه می‌کنید، نتیجه‌ای ندارند.

اکنون آماده برچسب گذاری تصاویر هستید.

1. تصویر ورودی را آماده کنید

یک شی InputImage از تصویر خود ایجاد کنید. وقتی از Bitmap استفاده می‌کنید، برچسب‌گذار تصویر سریع‌ترین کار را انجام می‌دهد، یا اگر از camera2 API استفاده می‌کنید، یک media.Image YUV_420_888. Image، که در صورت امکان توصیه می‌شوند.

می توانید یک شی InputImage از منابع مختلف ایجاد کنید که هر کدام در زیر توضیح داده شده است.

استفاده از یک media.Image

برای ایجاد یک شیء InputImage از یک شیء media.Image ، مانند زمانی که تصویری را از دوربین دستگاه می‌گیرید، شیء media.Image Image و چرخش تصویر را به InputImage.fromMediaImage() منتقل کنید.

اگر از کتابخانه CameraX استفاده می کنید، کلاس های OnImageCapturedListener و ImageAnalysis.Analyzer مقدار چرخش را برای شما محاسبه می کنند.

کاتلین

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

جاوا

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

اگر از کتابخانه دوربینی که درجه چرخش تصویر را به شما می دهد استفاده نمی کنید، می توانید آن را از روی درجه چرخش دستگاه و جهت سنسور دوربین در دستگاه محاسبه کنید:

کاتلین

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

جاوا

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

سپس، شی media.Image و مقدار درجه چرخش را به InputImage.fromMediaImage() منتقل کنید:

کاتلین

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

استفاده از URI فایل

برای ایجاد یک شی InputImage از URI فایل، زمینه برنامه و فایل URI را به InputImage.fromFilePath() ارسال کنید. این زمانی مفید است که از یک هدف ACTION_GET_CONTENT استفاده می کنید تا از کاربر بخواهید تصویری را از برنامه گالری خود انتخاب کند.

کاتلین

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

استفاده از ByteBuffer یا ByteArray

برای ایجاد یک شی InputImage از ByteBuffer یا ByteArray ، ابتدا درجه چرخش تصویر را همانطور که قبلا برای ورودی media.Image توضیح داده شد محاسبه کنید. سپس، شی InputImage با بافر یا آرایه به همراه ارتفاع، عرض، فرمت کدگذاری رنگ و درجه چرخش تصویر ایجاد کنید:

کاتلین

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

جاوا

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

استفاده از Bitmap

برای ایجاد یک شی InputImage از یک شی Bitmap ، اعلان زیر را انجام دهید:

کاتلین

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

تصویر با یک شی Bitmap همراه با درجه چرخش نمایش داده می شود.

2. برچسب تصویر را پیکربندی و اجرا کنید

برای برچسب گذاری اشیاء در یک تصویر، شی InputImage را به روش process ImageLabeler ارسال کنید.

  1. ابتدا یک نمونه از ImageLabeler را دریافت کنید.

    اگر می‌خواهید از برچسب‌گذار تصویر روی دستگاه استفاده کنید، اعلان زیر را انجام دهید:

کاتلین

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

جاوا

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. سپس تصویر را به متد process() منتقل کنید:

کاتلین

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

جاوا

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. اطلاعاتی در مورد اشیاء برچسب دار دریافت کنید

اگر عملیات برچسب گذاری تصویر با موفقیت انجام شود، لیستی از اشیاء ImageLabel به شنونده موفقیت ارسال می شود. هر شی ImageLabel چیزی را نشان می دهد که در تصویر برچسب گذاری شده است. مدل پایه از بیش از 400 برچسب مختلف پشتیبانی می کند. می‌توانید توضیحات متنی هر برچسب، فهرست‌بندی بین همه برچسب‌های پشتیبانی شده توسط مدل و امتیاز اطمینان از مسابقه را دریافت کنید. به عنوان مثال:

کاتلین

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

جاوا

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

نکاتی برای بهبود عملکرد در زمان واقعی

اگر می خواهید تصاویر را در یک برنامه بلادرنگ برچسب گذاری کنید، این دستورالعمل ها را دنبال کنید تا به بهترین نرخ فریم برسید:

  • اگر از Camera یا camera2 API استفاده می‌کنید، دریچه گاز با برچسب تصویر تماس می‌گیرد. اگر در حالی که برچسب‌دهنده تصویر در حال اجرا است، فریم ویدیویی جدیدی در دسترس است، قاب را رها کنید. برای مثال، کلاس VisionProcessorBase را در برنامه نمونه سریع شروع کنید.
  • اگر از CameraX API استفاده می‌کنید، مطمئن شوید که استراتژی فشار برگشتی روی مقدار پیش‌فرض ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST تنظیم شده است.STRATEGY_KEEP_ONLY_LATEST. این تضمین می کند که هر بار فقط یک تصویر برای تجزیه و تحلیل تحویل داده می شود. اگر در زمانی که آنالایزر مشغول است، تصاویر بیشتری تولید شود، به طور خودکار حذف می شوند و برای تحویل در صف قرار نمی گیرند. هنگامی که تصویر مورد تجزیه و تحلیل با فراخوانی ImageProxy.close بسته شد، آخرین تصویر بعدی تحویل داده می شود.
  • اگر از خروجی برچسب تصویر برای همپوشانی گرافیک روی تصویر ورودی استفاده می کنید، ابتدا نتیجه را از کیت ML دریافت کنید، سپس تصویر را رندر کنید و در یک مرحله همپوشانی کنید. این تنها یک بار برای هر فریم ورودی به سطح نمایشگر نمایش داده می شود. برای مثال، کلاس‌های CameraSourcePreview و GraphicOverlay را در برنامه نمونه شروع سریع ببینید.
  • اگر از Camera2 API استفاده می کنید، تصاویر را با فرمت ImageFormat.YUV_420_888 بگیرید. اگر از دوربین قدیمی‌تر API استفاده می‌کنید، تصاویر را با فرمت ImageFormat.NV21 بگیرید.