您可以使用机器学习套件为图片中识别出的对象加标签。提供的 机器学习套件支持 400 多种不同标签。
<ph type="x-smartling-placeholder">功能 | 不分类显示 | 捆绑 |
---|---|---|
实现 | 模型通过 Google Play 服务动态下载。 | 模型在构建时静态关联到您的模型。 |
应用大小 | 大小增加约 200 KB。 | 大小增加约 5.7 MB。 |
初始化时间 | 可能需要等到模型下载完毕后才能首次使用。 | 模型可立即使用 |
试试看
- 您可以试用示例应用, 查看此 API 的用法示例。
准备工作
<ph type="x-smartling-placeholder">请务必在您的项目级
build.gradle
文件中添加 Google 的buildscript
和allprojects
部分中的 Maven 制品库。将 Android 版机器学习套件库的依赖项添加到模块的 应用级 Gradle 文件,通常为
app/build.gradle
。请选择以下其中一项: 以下依赖项:如需将模型与应用捆绑,请执行以下操作:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:image-labeling:17.0.9' }
对于在 Google Play 服务中使用模型的情况:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8' }
如果您选择在 Google Play 服务中使用该模型,则可以配置 在应用下载完毕后,自动将模型下载到设备上 从 Play 商店安装的应用。为此,请将以下声明添加到 应用的
AndroidManifest.xml
文件:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ica" > <!-- To use multiple models: android:value="ica,model2,model3" --> </application>
您还可以明确检查模型可用性,并请求通过 Google Play 服务 ModuleInstallClient API。
如果您不启用安装时模型下载或请求明确下载, 系统会在您首次运行标签添加器时下载模型。您提出的请求 在下载完成之前未产生任何结果。
现在,您可以给图片加标签了。
1. 准备输入图片
基于图片创建InputImage
对象。
使用 Bitmap
时,图片标记器的运行速度最快;或者,如果您使用
Camera2 API、YUV_420_888 media.Image
您可以创建 InputImage
对象,下文对每种方法进行了说明。
使用 media.Image
如需创建 InputImage
,请执行以下操作:
对象(例如从 media.Image
对象中捕获图片时)
请传递 media.Image
对象和图片的
旋转为 InputImage.fromMediaImage()
。
如果您使用
<ph type="x-smartling-placeholder"></ph>
CameraX 库、OnImageCapturedListener
和
ImageAnalysis.Analyzer
类计算旋转角度值
。
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
如果您不使用可提供图片旋转角度的相机库, 可以根据设备的旋转角度和镜头方向来计算 设备传感器:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
然后,传递 media.Image
对象和
将旋转角度值设为 InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
使用文件 URI
如需创建 InputImage
,请执行以下操作:
对象时,请将应用上下文和文件 URI 传递给
InputImage.fromFilePath()
。在需要满足特定条件时
使用 ACTION_GET_CONTENT
intent 提示用户进行选择
从图库应用中获取图片
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
使用 ByteBuffer
或 ByteArray
如需创建 InputImage
,请执行以下操作:
对象ByteBuffer
或ByteArray
时,首先计算图像
旋转角度。media.Image
然后,创建带有缓冲区或数组的 InputImage
对象以及图片的
高度、宽度、颜色编码格式和旋转角度:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
使用 Bitmap
如需创建 InputImage
,请执行以下操作:
对象时,请进行以下声明:Bitmap
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
图片由 Bitmap
对象和旋转角度表示。
2. 配置并运行图片标记器
如需给图片中的对象加标签,请将InputImage
对象传递给
ImageLabeler
的 process
方法。
首先,获取
ImageLabeler
。如果要使用设备端图片标记器,请执行以下操作: 声明:
Kotlin
// To use default options: val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS) // Or, to set the minimum confidence required: // val options = ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = ImageLabeling.getClient(options)
Java
// To use default options: ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS); // Or, to set the minimum confidence required: // ImageLabelerOptions options = // new ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // ImageLabeler labeler = ImageLabeling.getClient(options);
- 然后,将图片传递给
process()
方法:
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. 获取已加标签的对象的相关信息
如果为图片加标签操作成功,系统将会显示一个列表, 将ImageLabel
对象传递给成功监听器。每个
ImageLabel
对象表示在图片中加了标签的内容。基本
模型支持 400 多个不同的标签。
您可以获取每个标签的文本说明,以及
模型和匹配的置信度分数。例如:
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
提高实时性能的相关提示
如果要在实时应用中给图片加标签,请遵循以下做法 实现最佳帧速率的准则:
- 如果您使用
Camera
或camera2
API、 限制对图片标记器的调用。如果新视频 当图片标记器运行时,如果有帧可用,请丢弃该帧。请参阅 <ph type="x-smartling-placeholder"></ph>VisionProcessorBase
类。 - 如果您使用
CameraX
API, 确保将 backpressure 策略设置为默认值ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
。 这可保证一次只传送一张图片进行分析。如果有更多图片 在分析器繁忙时生成,它们会被自动丢弃,不会排队等待 。通过调用 ImageProxy.close(),将传递下一张图片。 - 如果您使用图像标记器的输出在
输入图片,首先从机器学习套件获取结果,
和叠加层。这会渲染到
每个输入帧只执行一次。请参阅
<ph type="x-smartling-placeholder"></ph>
CameraSourcePreview
和GraphicOverlay
类。 - 如果您使用 Camera2 API,请使用
ImageFormat.YUV_420_888
格式。如果您使用的是旧版 Camera API,请使用ImageFormat.NV21
格式。