Gesichter mit ML Kit auf Android-Geräten erkennen

Mit Sammlungen den Überblick behalten Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.

Mit dem ML Kit können Sie Gesichter in Bildern und Videos erkennen.

FunktionNicht gebündeltGebündelt
ImplementierungDas Modell wird dynamisch über die Google Play-Dienste heruntergeladen.Das Modell ist bei der Erstellung statisch mit Ihrer App verknüpft.
App-GrößeCa. 800 KBCa. 6,9 MB
InitialisierungszeitMöglicherweise müssen Sie warten, bis das Modell heruntergeladen wurde.Modell ist sofort verfügbar

Testen

  • Probieren Sie die Beispiel-App aus, um sich ein Anwendungsbeispiel dieser API anzusehen.
  • Probiere den Code selbst mit dem Codelab aus.

Hinweis

  1. Achten Sie darauf, dass Sie in Ihrer build.gradle-Datei auf Projektebene das Maven-Repository von Google in die Abschnitte buildscript und allprojects aufnehmen.

  2. Fügen Sie die Abhängigkeiten für die ML Kit-Android-Bibliotheken in die Gradle-Datei des Moduls auf App-Ebene ein. Diese ist normalerweise app/build.gradle. Wählen Sie je nach Ihren Anforderungen eine der folgenden Abhängigkeiten aus:

    So bündeln Sie das Modell mit Ihrer App:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.5'
    }
    

    So verwenden Sie das Modell in den Google Play-Diensten:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. Wenn Sie das Modell in den Google Play-Diensten verwenden, können Sie Ihre App so konfigurieren, dass das Modell automatisch auf das Gerät heruntergeladen wird, nachdem es über den Play Store installiert wurde. Fügen Sie dazu der Datei AndroidManifest.xml Ihrer Anwendung die folgende Deklaration hinzu:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    Sie können die Modellverfügbarkeit auch explizit überprüfen und den Download über die ModuleInstallClient API der Google Play-Dienste anfordern.

    Wenn Sie das Herunterladen von Modellen während der Installation nicht aktivieren oder einen expliziten Download anfordern, wird das Modell beim ersten Ausführen des Detektors heruntergeladen. Anfragen, die vor dem Download eingehen, führen zu keinem Ergebnis.

Richtlinien für Eingabebilder

Für die Gesichtserkennung sollten Sie ein Bild mit einer Größe von mindestens 480 x 360 Pixeln verwenden. Damit ML Kit Gesichter richtig erkennen kann, müssen Eingabebilder Gesichter enthalten, die durch genügend Pixeldaten dargestellt werden. Im Allgemeinen sollte jedes Gesicht, das Sie in einem Bild erkennen möchten, mindestens 100 × 100 Pixel haben. Wenn die Konturen von Gesichtern erkannt werden sollen, ist für ML Kit eine hochauflösendere Eingabe erforderlich: Jedes Gesicht sollte mindestens 200 x 200 Pixel groß sein.

Wenn Sie Gesichter in einer Echtzeitanwendung erkennen, sollten Sie auch die Gesamtabmessungen der Eingabebilder berücksichtigen. Kleinere Bilder lassen sich schneller verarbeiten. So können Sie die Latenz reduzieren, indem Sie Bilder mit niedrigerer Auflösung aufnehmen. Beachten Sie jedoch die oben genannten Anforderungen an die Genauigkeit und achten Sie darauf, dass das Gesicht des Objekts so viel wie möglich einnimmt. Weitere Informationen finden Sie unter Tipps zur Verbesserung der Echtzeitleistung.

Ein schlechter Bildfokus kann sich auch auf die Genauigkeit auswirken. Wenn du keine akzeptablen Ergebnisse erhältst, bitte den Nutzer, das Bild noch einmal aufzunehmen.

Die Ausrichtung eines Gesichts relativ zur Kamera kann sich auch darauf auswirken, welche Gesichtsmerkmale ML Kit erkennt. Siehe Konzepte der Gesichtserkennung.

1. Gesichtserkennung konfigurieren

Bevor Sie die Gesichtserkennung auf ein Bild anwenden, müssen Sie diese mit einem FaceDetectorOptions-Objekt festlegen, wenn Sie eine der Standardeinstellungen des Gesichtserkennungssystems ändern möchten. Sie können die folgenden Einstellungen ändern:

Einstellungen
setPerformanceMode PERFORMANCE_MODE_FAST (Standard) | PERFORMANCE_MODE_ACCURATE

Bevorzugen Sie Geschwindigkeit oder Genauigkeit bei der Gesichtserkennung.

setLandmarkMode LANDMARK_MODE_NONE (Standard) | LANDMARK_MODE_ALL

Versuchen Sie, Gesichtsmerkmale wie Augen, Ohren, Nase, Wangen, Mund usw. zu identifizieren.

setContourMode CONTOUR_MODE_NONE (Standard) | CONTOUR_MODE_ALL

Gibt an, ob die Konturen der Gesichtszüge erkannt werden sollen. Konturen werden nur für das auffälligste Gesicht in einem Bild erkannt.

setClassificationMode CLASSIFICATION_MODE_NONE (Standard) | CLASSIFICATION_MODE_ALL

Gibt an, ob Gesichter in Kategorien wie „Lächeln“ und „Augen offen“ klassifiziert werden sollen.

setMinFaceSize float (Standard: 0.1f)

Legt die kleinste gewünschte Gesichtsgröße fest, ausgedrückt als Verhältnis der Breite des Kopfes zur Breite des Bildes.

enableTracking false (Standard) | true

Gibt an, ob Gesichter einer ID zugewiesen werden sollen, mit der Gesichter über Bilder hinweg verfolgt werden kann.

Beachten Sie, dass bei aktivierter Konturerkennung nur ein Gesicht erkannt wird. Die Gesichtserkennung liefert also keine nützlichen Ergebnisse. Aus diesem Grund und zur Verbesserung der Erkennungsgeschwindigkeit sollten Sie nicht sowohl die Konturerkennung als auch die Gesichtsverfolgung aktivieren.

Beispiel:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. Eingabebild vorbereiten

Erstellen Sie zum Erkennen von Gesichtern in einem Bild ein InputImage-Objekt aus einem Bitmap-, media.Image-, ByteBuffer-, Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das Objekt InputImage an die Methode process von FaceDetector.

Für die Gesichtserkennung sollten Sie ein Bild mit einer Größe von mindestens 480 x 360 Pixeln verwenden. Wenn Sie Gesichter in Echtzeit erkennen, können Sie durch das Erfassen von Frames mit dieser Mindestauflösung die Latenz reduzieren.

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Dies wird im Folgenden erläutert.

Mit einem media.Image

Wenn Sie ein InputImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild von der Kamera eines Geräts aufnehmen, übergeben Sie das Objekt media.Image und die Rotation des Bildes an InputImage.fromMediaImage().

Wenn Sie die KameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener und ImageAnalysis.Analyzer den Rotationswert für Sie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn Sie keine Kamerabibliothek verwenden, die Ihnen den Grad der Drehung des Bildes angibt, können Sie ihn anhand des Grads der Drehung und der Ausrichtung des Kamerasensors im Gerät berechnen:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das Objekt media.Image und den Rotationsgradwert an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Übergeben Sie den Anwendungskontext und den Datei-URI an InputImage.fromFilePath(), um ein InputImage-Objekt aus einem Datei-URI zu erstellen. Dies ist nützlich, wenn Sie den Intent ACTION_GET_CONTENT verwenden, um den Nutzer aufzufordern, ein Bild aus der Galerie-App auszuwählen.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Mit ByteBuffer oder ByteArray

Berechnen Sie zum Erstellen eines InputImage-Objekts aus einem ByteBuffer oder einem ByteArray zuerst den Grad der Bilddrehung, wie zuvor für die media.Image-Eingabe beschrieben. Erstellen Sie dann das Objekt InputImage mit dem Zwischenspeicher oder Array, zusammen mit Höhe, Breite, Farbcodierungsformat und Rotationsgrad des Bildes:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

Erstellen Sie zum Anlegen eines InputImage-Objekts aus einem Bitmap-Objekt die folgende Deklaration:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt zusammen mit einem Rotationsgrad dargestellt.

3. Instanz von FaceDetector abrufen

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. Bild verarbeiten

Übergeben Sie das Bild an die Methode process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. Informationen zu erkannten Gesichtern abrufen

Wenn die Gesichtserkennung erfolgreich ist, wird eine Liste von Face-Objekten an den Erfolgs-Listener übergeben. Jedes Face-Objekt stellt ein Gesicht dar, das im Bild erkannt wurde. Für jedes Gesicht können Sie die Begrenzungskoordinaten im Eingabebild sowie alle anderen Informationen abrufen, die Sie im Gesichtserkennungsmodus konfiguriert haben. Beispiel:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

Beispiel für Gesichtskonturen

Wenn die Gesichtskonturerkennung aktiviert ist, wird für jedes erkannte Gesicht eine Liste mit Punkten angezeigt. Diese Punkte stellen die Form des Features dar. Weitere Informationen zur Darstellung von Konturen finden Sie unter Konzepte für die Gesichtserkennung.

In der folgenden Abbildung ist zu sehen, wie diese Punkte einem Gesicht zugeordnet sind. Klicken Sie auf das Bild, um es zu vergrößern:

Beispiel für erkanntes konturiertes Mesh-Netzwerk

Gesichtserkennung in Echtzeit

Wenn Sie die Gesichtserkennung in einer Echtzeitanwendung verwenden möchten, beachten Sie die folgenden Best Practices, um die besten Framerates zu erzielen:

  • Konfigurieren Sie den Gesichtserkennung so, dass entweder die Gesichtserkennung oder die Klassifizierung und die Erkennung von Sehenswürdigkeiten verwendet werden, aber nicht beides:

    Konturerkennung
    Erkennung von Sehenswürdigkeiten
    Klassifizierung
    Erkennung und Klassifizierung von Sehenswürdigkeiten
    Konturerkennung und Sehenswürdigkeitenerkennung
    Konturerkennung und -klassifizierung
    Konturerkennung, Sehenswürdigkeiten und Klassifizierung

  • Modus „FAST“ aktivieren (standardmäßig aktiviert).

  • Bilder mit einer geringeren Auflösung aufnehmen Beachten Sie jedoch die Anforderungen an die Bildabmessungen dieser API.

  • Wenn Sie die Camera oder camera2 API verwenden, drosseln Sie Aufrufe an den Detektor. Wenn während der Ausführung des Detektors ein neuer Videoframe verfügbar ist, lassen Sie den Frame fallen. Ein Beispiel finden Sie in der Kurzanleitungs-Beispielanwendung in der Klasse VisionProcessorBase.
  • Achten Sie bei Verwendung der CameraX API darauf, dass die Rückdruckstrategie auf den Standardwert ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST festgelegt ist. Dadurch wird garantiert, dass jeweils nur ein Bild zur Analyse übermittelt wird. Wenn das Analyseprogramm ausgelastet ist, werden mehr Bilder erstellt, damit sie nicht zur Auslieferung in die Warteschlange gestellt werden. Sobald das analysierte Bild durch Aufrufen von ImageProxy.close() geschlossen wird, wird das nächste neueste Bild gesendet.
  • Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken auf dem Eingabebild einzublenden, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern dann das Bild und das Overlay in einem einzigen Schritt. Wird für jeden Eingabeframe nur einmal auf der Anzeigeoberfläche gerendert. Ein Beispiel findest du in den Beispielklassen CameraSourcePreview und GraphicOverlay.
  • Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im Format ImageFormat.YUV_420_888 auf. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im Format ImageFormat.NV21 auf.