Android'de ML Kit ile barkod tarama

Barkodları tanımak ve kodlarını çözmek için ML Kit'i kullanabilirsiniz.

Öne ÇıkarınGrup halinde olmayanlarGruplandırılanlar
UygulamaModel, Google Play Hizmetleri üzerinden dinamik olarak indirilir.Model, derleme sırasında uygulamanıza statik olarak bağlıdır.
Uygulama boyutuBoyutta yaklaşık 200 KB artış.Boyutta yaklaşık 2,4 MB büyüme.
Başlatma süresiİlk kullanımdan önce modelin indirilmesini beklemeniz gerekebilir.Model hemen kullanılabilir.

Deneyin

Başlamadan önce

  1. Proje düzeyindeki build.gradle dosyanızda, Google'ın Maven deposunu hem buildscript hem de allprojects bölümlerinize eklediğinizden emin olun.

  2. ML Kit Android kitaplıklarının bağımlılıklarını, modülünüzün uygulama düzeyindeki Gradle dosyasına (genellikle app/build.gradle) ekleyin. İhtiyaçlarınıza göre aşağıdaki bağımlılıklardan birini seçin:

    Modeli uygulamanızla birlikte paket haline getirmek için:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.2.0'
    }
    

    Modeli Google Play Hizmetleri'nde kullanmak için:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.0'
    }
    
  3. Modeli Google Play Hizmetleri'nde kullanmayı seçerseniz uygulamanızı, Play Store'dan yüklendikten sonra modeli cihaza otomatik olarak indirecek şekilde yapılandırabilirsiniz. Bunun için uygulamanızın AndroidManifest.xml dosyasına aşağıdaki beyanı ekleyin:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    Ayrıca, model kullanılabilirliğini açıkça kontrol edebilir ve Google Play Hizmetleri ModuleInstallClient API üzerinden indirme isteğinde bulunabilirsiniz.

    Yükleme zamanı modeli indirmelerini etkinleştirmezseniz veya açık bir şekilde indirme isteğinde bulunmazsanız model, tarayıcıyı ilk çalıştırdığınızda indirilir. İndirme tamamlanmadan önce yaptığınız istekler hiçbir sonuç vermez.

Giriş resmi kuralları

  • ML Kit'in barkodları doğru şekilde okuyabilmesi için giriş görüntülerinin yeterli sayıda piksel verisiyle temsil edilen barkodlar içermesi gerekir.

    Birçok barkod değişken boyutlu yükü desteklediğinden, özel piksel veri gereksinimleri hem barkodun türüne hem de içinde kodlanan veri miktarına bağlıdır. Genel olarak, barkodun en küçük anlamlı birimi en az 2 piksel genişliğinde, 2 boyutlu kodlar için ise 2 piksel yüksekliğinde olmalıdır.

    Örneğin, EAN-13 barkodları 1, 2, 3 veya 4 birim genişliğindeki çubuklar ve boşluklardan oluşur. Bu nedenle, ideal olarak bir EAN-13 barkod resminde en az 2, 4, 6 ve 8 piksel genişliğinde çubuklar ve boşluklar bulunur. EAN-13 barkodu toplamda 95 birim genişliğinde olduğundan, barkodun genişliği en az 190 piksel olmalıdır.

    PDF417 gibi daha yoğun biçimler, ML Kit'in güvenilir bir şekilde okuyabilmesi için daha büyük piksel boyutlarına ihtiyaç duyar. Örneğin, bir PDF417 kodu tek bir satırda en az 1156 piksel genişliğinde olacak şekilde en fazla 34 adet 17 birim genişliğinde "kelime" içerebilir.

  • Kötü resim odağı, tarama doğruluğunu etkileyebilir. Uygulamanız kabul edilebilir sonuçlar almıyorsa kullanıcıdan resmi tekrar çekmesini isteyin.

  • Tipik uygulamalarda, barkodların kameradan daha uzak bir mesafeden taranabilmesini sağlayan 1280x720 veya 1920x1080 gibi daha yüksek çözünürlüklü bir görüntü sağlamanız önerilir.

    Bununla birlikte, gecikmenin kritik olduğu uygulamalarda, daha düşük bir çözünürlükte resimler yakalayarak performansı artırabilirsiniz ancak bu durumda giriş görüntüsünün büyük bir kısmını barkodun kaplaması gerekir. Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları bölümünü de inceleyin.

1. Barkod tarayıcıyı yapılandırma

Hangi barkod biçimlerini okumayı beklediğinizi biliyorsanız sadece bu biçimleri algılayacak şekilde yapılandırarak barkod dedektörünün hızını artırabilirsiniz.

Örneğin, yalnızca Aztek kodunu ve QR kodlarını algılamak için aşağıdaki örnekte gösterildiği gibi bir BarcodeScannerOptions nesnesi oluşturun:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

Aşağıdaki biçimler desteklenir:

  • Kod 128 (FORMAT_CODE_128)
  • Kod 39 (FORMAT_CODE_39)
  • Kod 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • QR Kodu (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Aztekler (FORMAT_AZTEC)
  • Veri Matrisi (FORMAT_DATA_MATRIX)

Paket halinde sunulan 17.1.0 modeli ve paketlenmemiş model 18.2.0 ile başlayarak, kodu çözülese bile tüm olası barkodları döndürmek için enableAllPotentialBarcodes() yöntemini de çağırabilirsiniz. Bu, daha fazla algılamayı kolaylaştırmak için kullanılabilir. Örneğin, döndürülen sınırlayıcı kutudaki herhangi bir barkodun daha net bir görüntüsünü elde etmek için kamerayı yakınlaştırarak kullanılabilir.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Resmin dönüş derecesini belirten bir kamera kitaplığı kullanmıyorsanız bunu cihazın döndürme derecesinden ve cihazdaki kamera sensörünün yönüne göre hesaplayabilirsiniz:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Daha sonra, media.Image nesnesini ve döndürme derecesi değerini InputImage.fromMediaImage() öğesine iletin:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Dosya URI'si kullanma

Dosya URI'sinden InputImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath() adresine iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için bir ACTION_GET_CONTENT amacı kullandığınızda faydalıdır.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer veya ByteArray kullanma

ByteBuffer veya ByteArray öğesinden InputImage nesnesi oluşturmak için önce daha önce media.Image girişi için açıklandığı gibi resim döndürme derecesini hesaplayın. Ardından, InputImage nesnesini resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle birlikte arabellek veya diziyle oluşturun:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap kullanılıyor

Bir Bitmap nesnesinden InputImage nesnesi oluşturmak için aşağıdaki bildirimi yapın:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Resim, döndürme dereceleriyle birlikte bir Bitmap nesnesiyle temsil edilir.

3. BarcodeScanner'ın bir örneğini alma

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. Resmi işle

Resmi process yöntemine geçirin:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. Barkodlardan bilgi alma

Barkod tanıma işlemi başarılı olursa başarı dinleyicisine bir Barcode nesne listesi iletilir. Her Barcode nesnesi, resimde tespit edilen bir barkodu temsil eder. Her barkod için sınır koordinatlarının yanı sıra barkod tarafından kodlanan ham verileri de giriş görüntüsünden alabilirsiniz. Ayrıca, barkod tarayıcı barkod tarafından kodlanan veri türünü belirleyebiliyorsa ayrıştırılmış veriler içeren bir nesne de alabilirsiniz.

Örneğin:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları

Barkodları gerçek zamanlı bir uygulamada taramak istiyorsanız en iyi kare hızlarını elde etmek için aşağıdaki yönergeleri uygulayın:

  • Girişleri kameranın yerel çözünürlüğünde yakalamayın. Bazı cihazlarda girişlerin yerel çözünürlükte yakalanması çok büyük (10+ megapiksel) görüntüler üretir. Bu da, doğruluk açısından herhangi bir faydası olmayan çok düşük gecikme oranına neden olur. Bunun yerine, kameradan yalnızca barkod algılama için gerekli olan boyutu (genellikle 2 megapikselden yüksek olmayan) isteyin.

    Tarama hızı önemliyse görüntü yakalama çözünürlüğünü daha da düşürebilirsiniz. Bununla birlikte, yukarıda açıklanan minimum barkod boyutu gereksinimlerini göz önünde bulundurun.

    Akış video karelerindeki barkodları tanımaya çalışıyorsanız tanıyıcı kareden kareye farklı sonuçlar üretebilir. İyi bir sonuç döndürdüğünüzden emin olmak için aynı değerde bir art arda seri elde edene kadar beklemeniz gerekir.

    Sağlama basamağı, ITF ve CODE-39 için desteklenmez.

  • Camera veya camera2 API kullanıyorsanız algılayıcıya yapılan çağrıları daraltın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek için hızlı başlangıç örnek uygulamasındaki VisionProcessorBase sınıfına bakın.
  • CameraX API'yi kullanıyorsanız geri basınç stratejisinin varsayılan değeri ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST olarak ayarlandığından emin olun. Bu, analiz için tek seferde yalnızca bir görüntünün gönderilmesini garanti eder. Analiz aracı meşgulken daha fazla görüntü üretilirse bu görüntüler otomatik olarak bırakılır ve teslim edilmek üzere sıraya alınmaz. Analiz edilen resim, ImageProxy.close() çağrısı yapılarak kapatıldıktan sonra, bir sonraki en son resim yayınlanır.
  • Algılayıcının çıkışını giriş görüntüsünün üzerine grafik yerleştirmek için kullanırsanız önce sonucu ML Kit'ten alın, ardından görüntüyü ve yer paylaşımını tek bir adımda oluşturun. Bu işlem, her giriş çerçevesi için ekran yüzeyinde yalnızca bir kez oluşturulur. Örnek için hızlı başlangıç örnek uygulamasındaki CameraSourcePreview ve GraphicOverlay sınıflarına göz atın.
  • Camera2 API'sini kullanıyorsanız görüntüleri ImageFormat.YUV_420_888 biçiminde yakalayın. Eski Camera API'sini kullanıyorsanız görüntüleri ImageFormat.NV21 biçiminde çekin.