Scansionare i codici a barre con ML Kit su Android

Puoi utilizzare ML Kit per riconoscere e decodificare i codici a barre.

FunzionalitàNon raggruppatiIn bundle
ImplementazioneIl modello viene scaricato in modo dinamico tramite Google Play Services.Il modello è collegato in modo statico alla tua app al momento della creazione.
Dimensioni appAumento delle dimensioni di circa 200 kB.Aumento delle dimensioni di circa 2,4 MB.
Tempo di inizializzazionePotrebbe essere necessario attendere il download del modello prima del primo utilizzo.Il modello è disponibile immediatamente.

Prova

Prima di iniziare

  1. Nel file build.gradle a livello di progetto, assicurati di includere la proprietà Repository Maven in entrambe le sezioni buildscript e allprojects.

  2. Aggiungi le dipendenze per le librerie Android ML Kit agli file gradle a livello di app, che in genere è app/build.gradle. Scegli un'opzione tra le seguenti dipendenze in base alle tue esigenze:

    Per raggruppare il modello con la tua app:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.2.0'
    }
    

    Per l'utilizzo del modello in Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.0'
    }
    
  3. Se scegli di utilizzare il modello in Google Play Services, puoi configurare dell'app per scaricare automaticamente il modello sul dispositivo una volta dal Play Store. A tale scopo, aggiungi la seguente dichiarazione a il file AndroidManifest.xml della tua app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    Puoi anche verificare esplicitamente la disponibilità del modello e richiedere il download tramite L'API ModuleInstallaClient di Google Play Services.

    Se non attivi i download dei modelli al momento dell'installazione o richiedi un download esplicito, il modello viene scaricato la prima volta che esegui lo scanner. Le tue richieste prima del completamento del download non producono risultati.

Linee guida per l'immagine di input

  • Affinché ML Kit possa leggere accuratamente i codici a barre, le immagini di input devono contenere codici a barre rappresentati da un numero sufficiente di dati di pixel.

    I requisiti specifici dei dati relativi ai pixel dipendono da entrambi i tipi di il codice a barre e la quantità di dati codificati al suo interno, dato che molti codici a barre per supportare un payload di dimensione variabile. In generale, la variante più piccola dell'unità di misura del codice a barre deve essere larga almeno 2 pixel e, per Codici bidimensionali, altezza di 2 pixel.

    Ad esempio, i codici a barre EAN-13 sono composti da barre e spazi che sono 1, 2, 3 o 4 unità di larghezza, quindi un'immagine con codice a barre EAN-13 idealmente contiene barre e spazi di almeno 2, 4, 6 e 8 pixel di larghezza. Poiché un EAN-13 il codice a barre è largo in totale 95 unità, il codice a barre deve essere almeno 190 pixel di larghezza.

    I formati più densi, come PDF417, richiedono dimensioni in pixel maggiori per ML Kit per leggerli in modo affidabile. Ad esempio, un codice PDF417 può avere fino a 34 "parole" di 17 unità di un'unica riga, il che sarebbe idealmente Larghezza 1156 pixel.

  • Una scarsa messa a fuoco dell'immagine può influire sulla precisione della scansione. Se la tua app non riceve accettabili, chiedi all'utente di recuperare l'immagine.

  • Per le applicazioni tipiche, si consiglia di fornire una maggiore un'immagine con risoluzione massima, ad esempio 1280 x 720 o 1920 x 1080, che crea i codici a barre scansionabili da una distanza maggiore dalla fotocamera.

    Tuttavia, nelle applicazioni in cui la latenza è fondamentale, puoi migliorare rendimento delle immagini acquisendo immagini a una risoluzione più bassa, ma richiedendo il codice a barre costituisce la maggior parte dell'immagine di input. Vedi anche Suggerimenti per migliorare il rendimento in tempo reale.

1. Configura il lettore di codici a barre

Se sai quali formati di codici a barre ti aspetti di leggere, puoi migliorare la velocità del rilevatore di codici a barre configurandolo per rilevare solo quei formati.

Ad esempio, per rilevare solo il codice Azteca e i codici QR, crea un BarcodeScannerOptions come nell'esempio seguente:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

Sono supportati i seguenti formati:

  • Codice 128 (FORMAT_CODE_128)
  • Codice 39 (FORMAT_CODE_39)
  • Codice 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • Codice QR (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Azteca (FORMAT_AZTEC)
  • Matrice di dati (FORMAT_DATA_MATRIX)

A partire dal modello 17.1.0 in bundle e dal modello 18.2.0 non in bundle, puoi anche richiamare enableAllPotentialBarcodes() per restituire tutti i potenziali codici a barre anche se non possono essere decodificati. Può essere usato per facilitare un ulteriore rilevamento, ad esempio aumentando lo zoom della fotocamera per ottenere un'immagine più chiara di qualsiasi codice a barre riquadro di delimitazione.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se non utilizzi una raccolta di videocamere che fornisce il grado di rotazione dell'immagine, può calcolarlo in base al grado di rotazione e all'orientamento della fotocamera nel dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Quindi, passa l'oggetto media.Image e valore del grado di rotazione su InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utilizzo di un URI del file

Per creare una InputImage da un URI file, passa il contesto dell'app e l'URI del file a InputImage.fromFilePath(). È utile quando utilizza un intent ACTION_GET_CONTENT per chiedere all'utente di selezionare un'immagine dall'app Galleria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Con ByteBuffer o ByteArray

Per creare una InputImage oggetto da un ByteBuffer o un ByteArray, prima calcola l'immagine grado di rotazione come descritto in precedenza per l'input media.Image. Quindi, crea l'oggetto InputImage con il buffer o l'array, insieme al campo altezza, larghezza, formato di codifica del colore e grado di rotazione:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utilizzo di un Bitmap

Per creare una InputImage oggetto da un oggetto Bitmap, effettua la seguente dichiarazione:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'immagine è rappresentata da un oggetto Bitmap e da un grado di rotazione.

3. Recupera un'istanza del lettore di codici a barre

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. Elabora l'immagine

Trasferisci l'immagine al metodo process:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. Ricevere informazioni da codici a barre

Se il riconoscimento del codice a barre ha esito positivo, viene visualizzato un elenco di Barcode vengono passati al listener di operazioni eseguite con successo. Ogni oggetto Barcode rappresenta un codice a barre rilevato nell'immagine. Per ogni codice a barre, puoi ottenere il suo le coordinate di delimitazione nell'immagine di input, nonché i dati non elaborati codificati codice a barre. Inoltre, se il lettore di codici a barre è riuscito a determinare il tipo di dati, codificato dal codice a barre, puoi ottenere un oggetto contenente i dati analizzati.

Ad esempio:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Suggerimenti per migliorare il rendimento in tempo reale

Se desideri eseguire la scansione dei codici a barre in un'applicazione in tempo reale, procedi nel seguente modo: linee guida per ottenere le migliori frequenze fotogrammi:

  • Non acquisire input alla risoluzione nativa della videocamera. Su alcuni dispositivi, l'input alla risoluzione nativa produce risultati estremamente grandi (10+ megapixel), il che genera una latenza molto scarsa senza alcun vantaggio la precisione. Richiedi invece alla fotocamera solo la dimensione necessaria per il rilevamento del codice a barre, che di solito non supera i 2 megapixel.

    Se la velocità di scansione è importante, puoi ridurre ulteriormente l'acquisizione delle immagini risoluzione del problema. Tuttavia, tieni presente i requisiti minimi per le dimensioni del codice a barre. descritti sopra.

    Se stai cercando di riconoscere i codici a barre da una sequenza di flussi di dati fotogrammi video, il riconoscimento potrebbe produrre risultati diversi da frame a frame. Devi attendere di ricevere una serie consecutiva dello stesso per avere la certezza di restituire un buon risultato.

    La cifra di checksum non è supportata per ITF e CODE-39.

  • Se utilizzi Camera oppure API camera2, limitare le chiamate al rilevatore. Se viene pubblicato un nuovo video il frame diventa disponibile mentre il rilevatore è in esecuzione. Consulta le VisionProcessorBase nell'app di esempio della guida rapida per un esempio.
  • Se utilizzi l'API CameraX, assicurati che la strategia di contropressione sia impostata sul valore predefinito ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Ciò garantisce che verrà pubblicata una sola immagine alla volta per l'analisi. Se vengono visualizzate altre immagini generati quando l'analizzatore è occupato, verranno eliminati automaticamente e non verranno messi in coda la distribuzione dei contenuti. Dopo aver chiuso l'immagine da analizzare richiamando ImageProxy.close(), verrà pubblicata l'immagine successiva più recente.
  • Se utilizzi l'output del rilevatore per sovrapporre elementi grafici l'immagine di input, occorre prima ottenere il risultato da ML Kit, quindi eseguire il rendering dell'immagine e la sovrapposizione in un solo passaggio. Viene visualizzata sulla superficie di visualizzazione solo una volta per ogni frame di input. Consulta le CameraSourcePreview e GraphicOverlay nell'app di esempio della guida rapida per un esempio.
  • Se utilizzi l'API Camera2, acquisisci le immagini in Formato ImageFormat.YUV_420_888. Se usi l'API Camera precedente, acquisisci le immagini in Formato ImageFormat.NV21.