يمكنك استخدام مجموعة أدوات تعلُّم الآلة للتعرّف على النص في الصور أو الفيديو، مثل نصوص لافتة الشارع. الخصائص الرئيسية لهذه الميزة هي:
الميزة | غير مجمعة | مُجمَّعة |
---|---|---|
اسم المكتبة | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition
com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
التنفيذ | يتم تنزيل النموذج ديناميكيًا من خلال "خدمات Google Play". | يكون النموذج مرتبطًا بشكلٍ ثابت بتطبيقك في وقت الإصدار. |
حجم التطبيق | زيادة في الحجم بمقدار 260 كيلوبايت تقريبًا لكل بنية نص برمجي. | زيادة الحجم بمقدار 4 ميغابايت تقريبًا لكل نص برمجي لكل بنية. |
وقت الإعداد | قد تضطر إلى الانتظار حتى يتم تنزيل النموذج قبل الاستخدام لأول مرة. | يتوفّر الطراز على الفور. |
الأداء | عرض فوري على معظم الأجهزة لمكتبة النصوص اللاتينية، ويكون أبطأ بالنسبة إلى الأجهزة الأخرى | عرض فوري على معظم الأجهزة لمكتبة النصوص اللاتينية، ويكون أبطأ بالنسبة إلى الأجهزة الأخرى |
جرّبه الآن
- يمكنك تجربة نموذج التطبيق من أجل يمكنك الاطّلاع على مثال حول استخدام واجهة برمجة التطبيقات هذه.
- جرب الرمز بنفسك باستخدام درس تطبيقي حول الترميز.
قبل البدء
- في ملف
build.gradle
على مستوى المشروع، تأكَّد من تضمين مستودع Maven التابع لشركة Google في كلٍّ من القسمَين "buildscript
" و"allprojects
". أضِف الاعتماديات الخاصة بمكتبات ML Kit على Android إلى ملف Gradle على مستوى التطبيق الخاص بالوحدة، والذي يكون عادةً
app/build.gradle
:لدمج النموذج مع تطبيقك:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
لاستخدام النموذج في "خدمات Google Play":
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
إذا اخترت استخدام النموذج في "خدمات Google Play"، يمكنك: اضبط تطبيقك لتنزيل النموذج تلقائيًا على الجهاز بعد تم تثبيت تطبيقك من "متجر Play". لإجراء ذلك، أضِف ما يلي: بيان في ملف
AndroidManifest.xml
في تطبيقك:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
يمكنك أيضًا التحقّق صراحةً من مدى توفّر النموذج وطلب تنزيل التطبيق. من خلال ModuleInstallClient API في "خدمات Google Play". في حال عدم تفعيل نموذج وقت التثبيت للتنزيل أو طلب تنزيل فاضح، يتم تنزيل النموذج أولًا وقت تشغيل الماسح الضوئي. تستغرق الطلبات التي تقدمها قبل التنزيل مكتملة لا ينتج عنها أي نتائج.
1. إنشاء مثيل لـ TextRecognizer
إنشاء مثيل لـ TextRecognizer
، مع تمرير الخيارات
المتعلقة بالمكتبة التي أعلنت تبعيتها أعلاه:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. تحضير صورة الإدخال
للتعرّف على نص في صورة، عليك إنشاء عنصر InputImage
من
إما Bitmap
أو media.Image
أو ByteBuffer
أو مصفوفة بايت أو ملف على
الخاص بك. بعد ذلك، مرِّر الكائن InputImage
إلى العنصر
طريقة processImage
لـ TextRecognizer
.
يمكنك إنشاء InputImage
من مصادر مختلفة، في ما يلي شرح لكل منها.
يتم استخدام media.Image
لإنشاء InputImage
كائن من كائن media.Image
، مثلاً عند التقاط صورة من
كاميرا الجهاز، فما عليك سوى تمرير الكائن media.Image
تدوير إلى InputImage.fromMediaImage()
.
إذا كنت تستخدم
CameraX وOnImageCapturedListener
تحتسب صفوف ImageAnalysis.Analyzer
قيمة عرض الإعلانات بالتناوب.
لك.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
إذا كنت لا تستخدم مكتبة كاميرا تمنحك درجة تدوير الصورة، يمكنك يمكنه حسابه من خلال درجة دوران الجهاز واتجاه الكاميرا. جهاز الاستشعار في الجهاز:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
بعد ذلك، مرِّر الكائن media.Image
قيمة درجة التدوير إلى InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
استخدام معرف موارد منتظم (URI) لملف
لإنشاء InputImage
من معرف موارد منتظم (URI) لملف، فمرر سياق التطبيق ومعرف الموارد المنتظم (URI) للملف إلى
InputImage.fromFilePath()
يكون ذلك مفيدًا عندما
يجب استخدام هدف ACTION_GET_CONTENT
لتطلب من المستخدم الاختيار.
صورة من تطبيق المعرض الخاص به.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
يتم استخدام ByteBuffer
أو ByteArray
لإنشاء InputImage
كائن من ByteBuffer
أو ByteArray
، احسب الصورة أولاً
درجة التدوير كما هو موضح سابقًا لإدخال media.Image
.
بعد ذلك، يمكنك إنشاء الكائن InputImage
باستخدام المخزن المؤقت أو المصفوفة بالإضافة إلى
الارتفاع والعرض وتنسيق ترميز الألوان ودرجة التدوير:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
يتم استخدام Bitmap
لإنشاء InputImage
من كائن Bitmap
، قدِّم التعريف التالي:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
يتم تمثيل الصورة بواسطة كائن Bitmap
مع درجات التدوير.
3- معالجة الصورة
تمرير الصورة إلى طريقة process
:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. استخراج النص من مجموعات النصوص التي تم التعرّف عليها
إذا نجحت عملية التعرّف على النص، يتم تمرير كائن Text
إلى
المستمع الناجح. يحتوي كائن Text
على النص الكامل الذي تم التعرّف عليه في
الصورة وصفر أو أكثر من عناصر TextBlock
.
يمثل كل TextBlock
كتلة نص مستطيلة،
لا يحتوي على أي عناصر Line
أو أكثر. على كل
يمثل الكائن Line
سطرًا من النص يحتوي على صفرًا
أو أكثر من كائنات Element
. كل Element
يمثل كائن كلمة أو كيانًا شبيهًا بالكلمة، وتحتوي على صفر أو أكثر
كائنات Symbol
. كل Symbol
يمثل كائنًا حرفًا أو رقمًا أو كيانًا شبيهًا بالكلمة.
لكل TextBlock
وLine
Element
وSymbol
، أنت
يمكننا التعرف على النص في المنطقة، وإحداثيات المحيط
المنطقة والعديد من السمات الأخرى مثل معلومات الدوران ودرجة الثقة
وما إلى ذلك
على سبيل المثال:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
إرشادات إدخال الصور
-
لكي تتعرّف أداة تعلّم الآلة على النص بدقة، يجب أن تحتوي الصور المدخلة على نص يتم تمثيله ببيانات بكسل كافية. من الناحية المثالية، يجب ألا يقلّ حجم كل حرف عن 16×16 بكسل. ولا يوجد عمومًا على الدقة المحدد للأحرف الأكبر من 24×24 بكسل.
لذلك، على سبيل المثال، قد تعمل صورة بحجم 640×480 جيدًا لمسح بطاقة عمل ضوئيًا تشغل العرض الكامل للصورة لإجراء مسح ضوئي لمستند مطبوع على ورق بحجم حرف، فقد يلزم صورة 720×1280 بكسل.
-
يمكن أن يؤثر التركيز الضعيف للصورة على دقة التعرّف على النص. إذا لم تكن كذلك والحصول على نتائج مقبولة، فحاول أن تطلب من المستخدم تلخيص الصورة.
-
إذا كنت تتعرف على النص في تطبيق في الوقت الفعلي، فيجب عليك مراعاة الأبعاد الكلية للصور المدخلة. أصغر يمكن معالجة الصور بشكل أسرع. ولتقليل وقت الاستجابة، تأكد من أن النص يشغل أكبر قدر من الصورة قدر الإمكان، والتقاط الصور بدرجات دقة أقل (مع الأخذ في الاعتبار دقة المتطلبات المذكورة أعلاه). لمزيد من المعلومات، يُرجى مراجعة نصائح لتحسين الأداء.
نصائح لتحسين الأداء
- إذا كنت تستخدم
Camera
أوcamera2
واجهة برمجة التطبيقات، تقييد المكالمات الواردة إلى أداة الكشف. إذا ظهر فيديو جديد يصبح الإطار متاحًا أثناء تشغيل أداة الكشف، لذا أفلِت الإطار. يمكنك الاطّلاع على صف واحد (VisionProcessorBase
) في نموذج تطبيق Quickstart كمثال. - في حال استخدام
CameraX
API: تأكَّد من ضبط استراتيجية الضغط العكسي على قيمتها التلقائيةImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
ويضمن ذلك عرض صورة واحدة فقط للتحليل في كل مرة. إذا كانت المزيد من الصور يتم إنتاجها عندما يكون المحلل مشغولاً، فسيتم إسقاطها تلقائيًا ولن يتم وضعها في قائمة الانتظار التسليم. بمجرد إغلاق الصورة التي يتم تحليلها عن طريق استدعاء ImageProxy. Close()، سيتم تسليم أحدث صورة تالية - إذا استخدمت مخرجات أداة الكشف لتراكب الرسومات على
الصورة المدخلة، والحصول أولاً على النتيجة من ML Kit، ثم عرض الصورة
وتراكبها في خطوة واحدة. يتم عرض هذا المحتوى على سطح الشاشة.
مرة واحدة فقط لكل إطار إدخال يمكنك الاطّلاع على
CameraSourcePreview
وGraphicOverlay
صفًا في نموذج تطبيق Quickstart كمثال. - في حال استخدام واجهة برمجة التطبيقات Camera2 API، يمكنك التقاط الصور في
تنسيق
ImageFormat.YUV_420_888
إذا كنت تستخدم واجهة برمجة التطبيقات للكاميرا القديمة، يمكنك التقاط الصور في تنسيقImageFormat.NV21
- يمكنك التقاط صور بدقة أقل. ومع ذلك، ضع في اعتبارك أيضًا متطلبات أبعاد الصورة في واجهة برمجة التطبيقات هذه.