ML Kit を使用して画像内のテキストを認識する(Android)

ML Kit を使用すると、画像や動画内のテキスト(道路標識のテキストなど)を認識できます。この機能の主な特徴は次のとおりです。

機能 バンドルなし バンドル型
ライブラリ名 com.google.android.gms:play-services-mlkit-text-recognition

com.google.android.gms:play-services-mlkit-text-recognition-chinese

com.google.android.gms:play-services-mlkit-text-recognition-devanagari

com.google.android.gms:play-services-mlkit-text-recognition-japanese

com.google.android.gms:play-services-mlkit-text-recognition-korean

com.google.mlkit:text-recognition

com.google.mlkit:text-recognition-chinese

com.google.mlkit:text-recognition-devanagari

com.google.mlkit:text-recognition-japanese

com.google.mlkit:text-recognition-korean

実装 モデルは Google Play 開発者サービスを介して動的にダウンロードされます。 モデルは、ビルド時にアプリに静的にリンクされます。
アプリのサイズ スクリプト アーキテクチャごとに約 260 KB のサイズが増加します。 アーキテクチャごとにスクリプトあたり約 4 MB のサイズを増やします。
初期化時間 最初に使用する前に、モデルのダウンロードを待たなければならない場合があります。 モデルはすぐに利用できます。
パフォーマンス ラテン文字スクリプト ライブラリについてはほとんどのデバイスでリアルタイムですが、他のデバイスでは遅くなります。 ラテン文字スクリプト ライブラリについてはほとんどのデバイスでリアルタイムですが、他のデバイスでは遅くなります。

試してみる

始める前に

  1. プロジェクト レベルの build.gradle ファイルの buildscript セクションと allprojects セクションの両方に Google の Maven リポジトリを含めます。
  2. ML Kit Android ライブラリの依存関係をモジュールのアプリレベルの Gradle ファイル(通常は app/build.gradle)に追加します。

    モデルをアプリにバンドルする場合:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.mlkit:text-recognition:16.0.0'
    
      // To recognize Chinese script
      implementation 'com.google.mlkit:text-recognition-chinese:16.0.0'
    
      // To recognize Devanagari script
      implementation 'com.google.mlkit:text-recognition-devanagari:16.0.0'
    
      // To recognize Japanese script
      implementation 'com.google.mlkit:text-recognition-japanese:16.0.0'
    
      // To recognize Korean script
      implementation 'com.google.mlkit:text-recognition-korean:16.0.0'
    }
    

    Google Play 開発者サービスでモデルを使用する場合:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.0'
    
      // To recognize Chinese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.0'
    
      // To recognize Devanagari script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.0'
    
      // To recognize Japanese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.0'
    
      // To recognize Korean script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.0'
    }
    
  3. Google Play 開発者サービスでモデルを使用することを選択した場合、アプリが Google Play ストアからインストールされた後にモデルが自動的にデバイスにダウンロードされるようアプリを構成できます。そのためには、アプリの AndroidManifest.xml ファイルに次の宣言を追加します。

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ocr" >
          <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." -->
    </application>
    

    また、Google Play 開発者サービスの ModuleInstallClient API を使用して、モデルの可用性を明示的に確認してダウンロードをリクエストすることもできます。インストール時のモデルのダウンロードを有効にしない場合、または明示的なダウンロードをリクエストしない場合は、スキャナの初回実行時にモデルがダウンロードされます。ダウンロードが完了する前にリクエストした場合、結果は生成されません。

1. TextRecognizer のインスタンスを作成する

TextRecognizer のインスタンスを作成し、上記で依存関係を宣言したライブラリに関連するオプションを渡します。

Kotlin

// When using Latin script library
val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

// When using Chinese script library
val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())

// When using Devanagari script library
val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build())

// When using Japanese script library
val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build())

// When using Korean script library
val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())

Java

// When using Latin script library
TextRecognizer recognizer =
  TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

// When using Chinese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build());

// When using Devanagari script library
TextRecognizer recognizer =
  TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build());

// When using Japanese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build());

// When using Korean script library
TextRecognizer recognizer =
  TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());

2. 入力画像を準備する

画像内のテキストを認識するには、Bitmapmedia.ImageByteBuffer、バイト配列、デバイス上のファイルから InputImage オブジェクトを作成します。次に、InputImage オブジェクトを TextRecognizerprocessImage メソッドに渡します。

さまざまなソースから InputImage オブジェクトを作成できます。それぞれのソースについて、以下で説明します。

media.Image の使用

media.Image オブジェクトから InputImage オブジェクトを作成するには(デバイスのカメラから画像をキャプチャする場合など)、media.Image オブジェクトと画像の回転を InputImage.fromMediaImage() に渡します。

CameraX ライブラリを使用する場合は、OnImageCapturedListener クラスと ImageAnalysis.Analyzer クラスによって回転値が計算されます。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

画像の回転角度を取得するカメラ ライブラリを使用しない場合は、デバイスの回転角度とデバイス内のカメラセンサーの向きから計算できます。

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

次に、media.Image オブジェクトと回転角度値を InputImage.fromMediaImage() に渡します。

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

ファイル URI の使用

InputImage オブジェクトをファイルの URI から作成するには、アプリ コンテキストとファイルの URI を InputImage.fromFilePath() に渡します。これは、ACTION_GET_CONTENT インテントを使用して、ギャラリー アプリから画像を選択するようにユーザーに促すときに便利です。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer または ByteArray の使用

ByteBuffer または ByteArray から InputImage オブジェクトを作成するには、media.Image 入力について前述したように、まず画像の回転角度を計算します。次に、画像の高さ、幅、カラー エンコード形式、回転角度とともに、バッファまたは配列を含む InputImage オブジェクトを作成します。

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap の使用

Bitmap オブジェクトから InputImage オブジェクトを作成するには、次の宣言を行います。

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

画像は Bitmap オブジェクトと回転角度で表されます。

3.画像を処理する

画像を process メソッドに渡します。

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. 認識したテキストのブロックからテキストを抽出する

テキスト認識オペレーションが成功すると、Text オブジェクトが成功リスナーに渡されます。Text オブジェクトには、画像で認識された全テキストと 0 個以上の TextBlock オブジェクトが含まれます。

TextBlock は、0 個以上の Line オブジェクトを含む長方形のテキスト ブロックを表します。各 Line オブジェクトは 1 行のテキストを表し、その中に 0 個以上の Element オブジェクトが含まれます。各 Element オブジェクトは、0 個以上の Symbol オブジェクトを含む単語または単語に似たエンティティを表します。各 Symbol オブジェクトは、文字、数字、単語に似たエンティティを表します。

TextBlockLineElementSymbol の各オブジェクトについて、領域で認識されたテキスト、領域の境界座標、その他多くの属性(回転情報や信頼スコアなど)を取得できます。

次に例を示します。

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

入力画像のガイドライン

  • ML Kit でテキストを正確に認識するには、入力画像に十分なピクセルデータで表現されたテキストが含まれている必要があります。理想的には、各文字は 16×16 ピクセル以上にする必要があります。通常、文字を 24x24 ピクセルより大きくしても、精度面でのメリットはありません。

    たとえば、640x480 の画像は、画像の幅いっぱいの名刺をスキャンするのに適しています。レターサイズの用紙に印刷されたドキュメントをスキャンするには、720x1280 ピクセルの画像が必要になることがあります。

  • 画像のフォーカスが弱いと、テキスト認識の精度に影響することがあります。満足できる結果が得られない場合は、画像をキャプチャし直すようユーザーに依頼してください。

  • リアルタイム アプリケーションでテキストを認識する場合は、入力画像の全体的なサイズを考慮する必要があります。サイズが小さいほど処理が速くなります。レイテンシを短縮するには、テキストが画像の大部分を占めるようにし、低解像度で画像をキャプチャします(上記の精度要件に注意してください)。詳細については、パフォーマンスを改善するためのヒントをご覧ください。

パフォーマンス改善のヒント

  • Camera API または camera2 API を使用する場合は、検出機能の呼び出しをスロットリングします。検出機能の実行中に新しい動画フレームが使用可能になった場合は、そのフレームをドロップします。例については、クイックスタート サンプルアプリの VisionProcessorBase クラスをご覧ください。
  • CameraX API を使用する場合は、バックプレッシャー戦略がデフォルト値の ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST に設定されていることを確認してください。これにより、分析のために一度に 1 つのイメージのみが配信されることが保証されます。アナライザがビジー状態のときにさらに多くの画像が生成された場合、それらの画像は自動的に破棄され、配信のキューには追加されません。ImageProxy.close() を呼び出して分析対象のイメージを閉じると、次の最新のイメージが配信されます。
  • 検出機能の出力を使用して入力画像にグラフィックスをオーバーレイする場合は、まず ML Kit から結果を取得してから、画像とオーバーレイを 1 つのステップでレンダリングします。これにより、ディスプレイ サーフェスに入力フレームごとに 1 回だけレンダリングされます。例については、クイックスタート サンプルアプリの CameraSourcePreview クラスと GraphicOverlay クラスをご覧ください。
  • Camera2 API を使用する場合は、ImageFormat.YUV_420_888 形式で画像をキャプチャします。古い Camera API を使用する場合は、ImageFormat.NV21 形式で画像をキャプチャします。
  • 低解像度で画像をキャプチャすることを検討してください。ただし、この API の画像サイズの要件にも注意してください。