Détecter des visages avec ML Kit sur Android

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Vous pouvez utiliser ML Kit pour détecter des visages dans des images et des vidéos.

FonctionnalitéSans catégorieAvec bundles
IntégrationLe modèle est téléchargé de manière dynamique via les services Google Play.Le modèle est associé à votre application de manière statique au moment de la compilation.
Taille d'applicationAugmentation de la taille d'environ 800 Ko.Augmentation de la taille d'environ 6,9 Mo.
Délai d'initialisationVous devrez peut-être attendre que le modèle soit téléchargé avant d'utiliser le produit.Le modèle est disponible immédiatement

Essayer

Avant de commencer

  1. Dans le fichier build.gradle au niveau du projet, assurez-vous d'inclure le dépôt Maven de Google dans vos sections buildscript et allprojects.

  2. Ajoutez les dépendances des bibliothèques Android ML Kit au fichier Gradle de votre module, généralement app/build.gradle. Choisissez l'une des dépendances suivantes en fonction de vos besoins:

    Pour associer le modèle à votre application :

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.5'
    }
    

    Pour utiliser le modèle dans les services Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. Si vous choisissez d'utiliser le modèle dans les services Google Play, vous pouvez configurer votre application de sorte qu'elle télécharge automatiquement le modèle sur l'appareil après son installation depuis le Play Store. Pour ce faire, ajoutez la déclaration suivante au fichier AndroidManifest.xml de votre application:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    Vous pouvez également vérifier explicitement la disponibilité du modèle et demander un téléchargement via l'API ModuleInstallClient des services Google Play.

    Si vous n'activez pas les téléchargements de modèles au moment de l'installation ou si vous demandez un téléchargement explicite, le modèle est téléchargé la première fois que vous exécutez le détecteur. Les requêtes que vous effectuez avant la fin du téléchargement ne produisent aucun résultat.

Consignes pour les images d'entrée

Pour la reconnaissance faciale, utilisez une image d'au moins 480 x 360 pixels. Pour que ML Kit puisse détecter avec précision les visages, les images d'entrée doivent contenir des visages représentés par suffisamment de données de pixels. En général, chaque visage que vous souhaitez détecter dans une image doit mesurer au moins 100 x 100 pixels. Si vous souhaitez détecter les contours des visages, ML Kit nécessite une résolution plus élevée: chaque visage doit mesurer au moins 200 x 200 pixels.

Si vous détectez des visages dans une application en temps réel, vous pouvez également prendre en compte les dimensions globales des images d'entrée. Les images de petite taille peuvent être traitées plus rapidement. Par conséquent, pour réduire la latence, capturez les images avec des résolutions inférieures, mais tenez compte des exigences de précision ci-dessus et assurez-vous que le visage du sujet occupe autant d'images que possible. Consultez également nos conseils pour améliorer les performances en temps réel.

Une image floue peut également nuire à la précision de cette dernière. Si vous n'obtenez pas de résultats acceptables, demandez à l'utilisateur de recréer l'image.

L'orientation d'un visage par rapport à l'appareil photo peut également influer sur les traits du visage détectés par ML Kit. Consultez la page Concepts de détection des visages.

1. Configurer le détecteur de visage

Avant d'appliquer la détection des visages à une image, si vous souhaitez modifier les paramètres par défaut du détecteur de visages, spécifiez-les avec un objet FaceDetectorOptions. Vous pouvez modifier les paramètres suivants:

Paramètres
setPerformanceMode PERFORMANCE_MODE_FAST (par défaut) | PERFORMANCE_MODE_ACCURATE

Privilégier la rapidité ou la précision lors de la détection des visages.

setLandmarkMode LANDMARK_MODE_NONE (par défaut) | LANDMARK_MODE_ALL

Indique s'il faut essayer d'identifier des « points de repère » faciales : yeux, oreilles, nez, joues, bouche, etc.

setContourMode CONTOUR_MODE_NONE (par défaut) | CONTOUR_MODE_ALL

Permet de détecter les contours des traits du visage. Les contours ne sont détectés que pour le visage le plus visible d'une image.

setClassificationMode CLASSIFICATION_MODE_NONE (par défaut) | CLASSIFICATION_MODE_ALL

Indique si les visages doivent être classés dans des catégories telles que "sourire" et "yeux ouverts".

setMinFaceSize float (par défaut: 0.1f)

Définit la plus petite taille souhaitée de visage, exprimée en tant que ratio de la largeur de la tête par rapport à la largeur de l'image.

enableTracking false (par défaut) | true

Attribuer ou non un identifiant aux visages, qui permet de suivre les visages dans les images.

Sachez que lorsque la détection de contour est activée, un seul visage est détecté. Le suivi des visages ne produit donc pas de résultats utiles. C'est pourquoi, pour améliorer la vitesse de détection, n'activez pas à la fois la détection des contours et le suivi des visages.

Exemple :

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. Préparer l'image d'entrée

Pour détecter les visages dans une image, créez un objet InputImage à partir d'un fichier Bitmap, media.Image, ByteBuffer, d'un tableau d'octets ou d'un fichier sur l'appareil. Transmettez ensuite l'objet InputImage à la méthode process de FaceDetector.

Pour la détection des visages, utilisez une image d'au moins 480 x 360 pixels. Si vous détectez des visages en temps réel, la capture d'images à cette résolution minimale peut contribuer à réduire la latence.

Vous pouvez créer un objet InputImage à partir de différentes sources, chacune étant expliquée ci-dessous.

Utiliser un media.Image

Pour créer un objet InputImage à partir d'un objet media.Image, par exemple lorsque vous enregistrez une image à partir de l'appareil photo d'un appareil, transmettez l'objet media.Image et la rotation de l'image à InputImage.fromMediaImage().

Si vous utilisez la bibliothèque CameraX, les classes OnImageCapturedListener et ImageAnalysis.Analyzer calculent la valeur de rotation pour vous.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si vous n'utilisez pas de bibliothèque de caméras qui indique le degré de rotation de l'image, vous pouvez la calculer à partir du degré de rotation et de l'orientation du capteur de l'appareil:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Transmettez ensuite l'objet media.Image et la valeur du degré de rotation à InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utiliser un URI de fichier

Pour créer un objet InputImage à partir d'un URI de fichier, transmettez le contexte d'application et l'URI de fichier à InputImage.fromFilePath(). Cela est utile lorsque vous utilisez un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image dans son application de galerie.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utiliser un ByteBuffer ou ByteArray

Pour créer un objet InputImage à partir d'un objet ByteBuffer ou ByteArray, vous devez d'abord calculer le degré de rotation de l'image comme décrit précédemment pour l'entrée media.Image. Créez ensuite l'objet InputImage avec le tampon ou le tableau, ainsi que la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation de l'image:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utiliser un Bitmap

Pour créer un objet InputImage à partir d'un objet Bitmap, effectuez la déclaration suivante:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'image est représentée par un objet Bitmap avec des degrés de rotation.

3. Obtenir une instance de FaceDetector

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. Traiter l'image

Transmettez l'image à la méthode process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. Obtenir des informations sur les visages détectés

Si l'opération de détection des visages réussit, une liste d'objets Face est transmise à l'écouteur de réussite. Chaque objet Face représente un visage détecté dans l'image. Pour chaque visage, vous pouvez obtenir ses coordonnées de délimitation dans l'image d'entrée, ainsi que toute autre information que vous avez configurée pour détecter le visage. Exemple :

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

Exemple de contours de visage

Lorsque la détection du contour du visage est activée, vous obtenez une liste de points pour chaque visage détecté. Ces points représentent la forme de l'élément géographique. Pour en savoir plus sur la représentation des contours, consultez la page Concepts de détection des visages.

L'image suivante montre comment ces points sont mappés à une face. Cliquez sur l'image pour l'agrandir:

exemple de maillage de contours de visage détecté

Détection des visages en temps réel

Si vous souhaitez utiliser la détection des visages dans une application en temps réel, suivez ces consignes pour obtenir les meilleures fréquences d'images:

  • Configurez le détecteur de visage de sorte qu'il utilise la détection ou le classement des contours du visage et la détection des points de repère, mais pas les deux:

    Détection des points de repère
    Détection des points de repère
    Classification
    Détection et classification des points de repère
    Détection des points de repère et détection des points de repère
    Détection et classification des points de repère
    Détection des points de repère, détection des points de repère et classification

  • Activez le mode FAST (activé par défaut).

  • Envisagez de capturer des images avec une résolution inférieure. Gardez également à l'esprit les exigences de cette API concernant les dimensions d'image.

  • Si vous utilisez l'API Camera ou camera2, limitez les appels au détecteur. Si une nouvelle image vidéo est disponible pendant que le détecteur est en cours d'exécution, abandonnez-la. Consultez la classe VisionProcessorBase dans l'exemple d'application de démarrage rapide pour obtenir un exemple.
  • Si vous utilisez l'API CameraX, assurez-vous que la stratégie de contre-pression est définie sur sa valeur par défaut ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Ainsi, une seule image à la fois sera envoyée pour analyse. Si d'autres images sont produites lorsque l'analyseur est occupé, elles seront supprimées automatiquement et ne seront pas mises en file d'attente pour la diffusion. Une fois que l'image analysée est fermée en appelant ImageProxy.close(), la prochaine image la plus récente est diffusée.
  • Si vous utilisez la sortie du détecteur pour superposer des graphiques sur l'image d'entrée, commencez par obtenir le résultat de ML Kit, puis effectuez le rendu de l'image et de la superposition en une seule étape. Il ne s'affiche à la surface d'affichage qu'une seule fois pour chaque image d'entrée. Consultez les classes CameraSourcePreview et GraphicOverlay dans l'exemple d'application de démarrage rapide pour obtenir un exemple.
  • Si vous utilisez l'API Camera2, enregistrez des images au format ImageFormat.YUV_420_888. Si vous utilisez l'ancienne API Camera, enregistrez des images au format ImageFormat.NV21.