Restrições da janela de tempo de retirada e entrega

OptimizeToursRequest aplica restrições ao seguinte:

  • Remessas, que afetam a forma como as remessas são realizadas
  • Veículos, afetando a forma como as rotas dos veículos são calculadas
  • Em todo o mundo, afetando veículos e remessas.

Este guia se concentra em uma restrição essencial dos fretes: as janelas de tempo.

As janelas de tempo são um tipo de restrição que você fornece na mensagem OptimizeToursRequest (REST, gRPC) para especificar limites baseados em tempo para atividades de envio. Esse tipo de restrição influencia quando e como um envio pode ser realizado, além da atribuição de veículo para o envio. Com essas restrições, o otimizador dá preferência aos veículos que podem atender melhor às restrições de tempo do envio.

Restrições de envio: janelas de tempo

Você especifica quando uma retirada ou entrega pode ocorrer na mensagem Shipment.VisitRequest da seguinte maneira:

  • Use a propriedade timeWindows na mensagem (REST, gRPC).
  • Especifique o horário de início e término na mensagem TimeWindow (REST, gRPC).

Exemplo de solicitação com restrições de janela de tempo

O exemplo aqui ilustra três remessas diferentes, cada uma com o próprio período de entrega. Para simplificar, este exemplo define janelas de tempo apenas em deliveries, mas elas também podem ser aplicadas a retiradas. Várias janelas de tempo podem ser especificadas, mas este exemplo usa apenas uma por VisitRequest de entrega.

Confira um exemplo de solicitação com janelas de tempo

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T18:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Exemplo de resposta com restrições de janela de tempo

Na resposta de exemplo, o horário de início e término do veículo são 17:35:50 e 18:17:24, respectivamente. Esses tempos refletem o otimizador minimizando o tempo necessário para operar o veículo especificado na solicitação como costPerHour, satisfazendo todas as restrições de janela de tempo. Usar 17:35:50 como horário de início elimina a necessidade de o veículo esperar em um local de visita até que a janela de tempo da visita comece. Ele aparece na resposta como valores waitDuration zero.

Confira uma resposta para a solicitação de exemplo com janelas de tempo

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:35:50Z",
      "vehicleEndTime": "2023-01-13T18:17:24Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:35:50Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:38:20Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:50Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:50:09Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "796s"
        },
        {
          "startTime": "2023-01-13T18:07:35Z",
          "detour": "1520s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:35:50Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:38:20Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:50Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:43:20Z"
        },
        {
          "travelDuration": "341s",
          "travelDistanceMeters": 1312,
          "waitDuration": "0s",
          "totalDuration": "341s",
          "startTime": "2023-01-13T17:54:19Z"
        },
        {
          "travelDuration": "205s",
          "travelDistanceMeters": 636,
          "waitDuration": "0s",
          "totalDuration": "205s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:11:45Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "1294s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2494s",
        "travelDistanceMeters": 4595
      },
      "routeCosts": {
        "model.vehicles.cost_per_hour": 27.711111111111112,
        "model.vehicles.cost_per_kilometer": 45.95
      },
      "routeTotalCost": 73.661111111111111
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1294s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2494s",
      "travelDistanceMeters": 4595
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:35:50Z",
    "latestVehicleEndTime": "2023-01-13T18:17:24Z",
    "totalCost": 73.661111111111111,
    "costs": {
      "model.vehicles.cost_per_hour": 27.711111111111112,
      "model.vehicles.cost_per_kilometer": 45.95
    }
  }
}
    

As janelas de tempo ordenaram o visits do veículo para que os envios com as janelas de tempo mais antigas sejam entregues primeiro.

  1. shipments[2] é entregue às 17h50
  2. shipments[1] é entregue às 18h
  3. shipments[0] é entregue às 18h07

A solicitação de exemplo especifica restrições de janela de tempo rígidas, exigindo que as entregas sejam concluídas dentro dessas janelas. Se a conclusão do VisitRequests de uma remessa dentro de qualquer uma das janelas de tempo não for viável ou econômica, o otimizador ignora a remessa. Se o envio tiver um penaltyCost, o otimizador vai adicioná-lo aos custos informados na resposta metrics. Caso contrário, a propriedade skippedMandatoryShipmentCount da mensagem OptimizeToursResponse (REST, gRPC) aumenta.

Se você mudar as janelas de tempo deslocando a janela de shipment[1] várias horas mais tarde (para 21h em vez de 18h), os resultados serão diferentes, conforme ilustrado nos exemplos a seguir.

Confira um exemplo de solicitação com janelas de tempo que não podem ser atendidas

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "endTime": "2023-01-13T19:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "endTime": "2023-01-13T18:00:00Z"
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Confira uma resposta ao segundo exemplo de solicitação com janelas de tempo, em que um envio é ignorado

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:37:49Z",
      "vehicleEndTime": "2023-01-13T18:09:49Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:37:49Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:40:19Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T17:49:38Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "946s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:37:49Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:40:19Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-13T17:42:49Z"
        },
        {
          "travelDuration": "372s",
          "travelDistanceMeters": 1348,
          "waitDuration": "0s",
          "totalDuration": "372s",
          "startTime": "2023-01-13T17:53:48Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-13T18:04:10Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "1120s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1920s",
        "travelDistanceMeters": 3995
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 39.95,
        "model.vehicles.cost_per_hour": 21.333333333333332
      },
      "routeTotalCost": 61.283333333333331
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "1120s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1920s",
      "travelDistanceMeters": 3995
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:37:49Z",
    "latestVehicleEndTime": "2023-01-13T18:09:49Z",
    "totalCost": 81.283333333333331,
    "costs": {
      "model.shipments.penalty_cost": 20,
      "model.vehicles.cost_per_hour": 21.333333333333332,
      "model.vehicles.cost_per_kilometer": 39.95
    }
  }
}
    

Neste exemplo, o período mais recente fez com que shipment[1] fosse ignorado, porque o tempo de operação extra do veículo necessário para concluir a entrega dentro do período especificado excedeu o custo da multa do envio. O custo da penalidade para shipment[1] aparece em metrics.costs, e o índice aparece em skippedShipments.

Restrições flexíveis de janela de tempo

Conforme mencionado brevemente em Parâmetros do modelo de custo, as janelas de tempo podem ser aplicadas como restrições flexíveis. As restrições flexíveis diferem de restrições rígidas da seguinte maneira:

  • Restrições rígidas: não podem ser violadas, e o otimizador não oferece uma solução que viole a restrição, mesmo que isso signifique ignorar um envio.
  • Restrições flexíveis: podem ser violadas, o que significa que o otimizador pode oferecer uma solução que viola uma restrição flexível. No entanto, o otimizador também aplica um custo a qualquer violação. Você fornece esse custo como uma propriedade adicional na janela de tempo, normalmente como um custo por hora para cada hora antes ou depois da janela de tempo em que a atividade ocorre.

As janelas de tempo são suavizadas usando softStartTime ou softEndTime em vez de startTime ou endTime, respectivamente, e definindo costPerHourBeforeSoftStartTime ou costPerHourAfterSoftEndTime.

Use restrições flexíveis de janela de tempo quando as retiradas ou entregas devem ocorrer dentro de um período especificado, mas a retirada ou a entrega dentro desse período não são absolutamente necessárias. Você pode usar restrições de janela de tempo rígidas e flexíveis juntas para expressar objetivos de negócios. Exemplo:

  • Janela de tempo fixa: indica o horário de funcionamento de um cliente, por exemplo, das 9h às 17h.
  • Período flexível: indica o período de entrega ou retirada que corresponde à notificação enviada ao cliente, por exemplo, das 9h às 13h.

Neste exemplo, a restrição de horário de início do envio que foi pulado anteriormente porque a janela de tempo começou tarde demais foi suavizada. As janelas de tempo dos outros envios também foram reduzidas.

Confira um exemplo de solicitação com janelas de tempo rígido e flexível

{
  "populatePolylines": false,
  "populateTransitionPolylines": false,
  "model": {
    "globalStartTime": "2023-01-13T16:00:00Z",
    "globalEndTime": "2023-01-14T16:00:00Z",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T18:00:00Z",
                "softEndTime": "2023-01-13T19:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s",
            "timeWindows": [
              {
                "softStartTime": "2023-01-13T21:00:00Z",
                "endTime": "2023-01-13T21:30:00Z",
                "costPerHourBeforeSoftStartTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 20.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s",
            "timeWindows": [
              {
                "startTime": "2023-01-13T17:30:00Z",
                "softEndTime": "2023-01-13T18:00:00Z",
                "costPerHourAfterSoftEndTime": 2.0
              }
            ]
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 40.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

Confira uma resposta ao exemplo de solicitação com janelas de tempo rígidas e flexíveis

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-13T17:48:35Z",
      "vehicleEndTime": "2023-01-13T18:24:28Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-13T17:48:35Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-13T17:51:05Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-13T17:53:35Z",
          "detour": "300s"
        },
        {
          "startTime": "2023-01-13T18:00:00Z",
          "detour": "300s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-13T18:07:42Z",
          "detour": "493s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-13T18:17:27Z",
          "detour": "873s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:48:35Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:51:05Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-13T17:53:35Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-13T17:56:05Z"
        },
        {
          "travelDuration": "212s",
          "travelDistanceMeters": 791,
          "waitDuration": "0s",
          "totalDuration": "212s",
          "startTime": "2023-01-13T18:04:10Z"
        },
        {
          "travelDuration": "335s",
          "travelDistanceMeters": 1204,
          "waitDuration": "0s",
          "totalDuration": "335s",
          "startTime": "2023-01-13T18:11:52Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-13T18:21:37Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 3,
        "travelDuration": "953s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "1200s",
        "totalDuration": "2153s",
        "travelDistanceMeters": 3455
      },
      "routeCosts": {
        "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
        "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
        "model.vehicles.cost_per_hour": 23.922222222222221,
        "model.vehicles.cost_per_kilometer": 34.55
      },
      "routeTotalCost": 64.797222222222217
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "953s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "2153s",
      "travelDistanceMeters": 3455
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-13T17:48:35Z",
    "latestVehicleEndTime": "2023-01-13T18:24:28Z",
    "totalCost": 64.797222222222217,
    "costs": {
      "model.vehicles.cost_per_kilometer": 34.55,
      "model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time": 5.7433333333333332,
      "model.shipments.deliveries.time_windows.cost_per_hour_after_soft_end_time": 0.58166666666666667,
      "model.vehicles.cost_per_hour": 23.922222222222221
    }
  }
}
    

Onde o exemplo com apenas restrições de janela de tempo rígido pula completamente shipment[1], a janela de tempo de entrega é suavizada, fazendo com que ela seja entregue antes do início da janela de tempo. Da mesma forma, a suavização dos horários de término das outras remessas permitiu que shipment[2] fosse entregue após o término da janela de tempo.

Ao mesmo tempo, os custos e o total de envios mudaram:

  • totalCost: diminuiu de 81,283 para 64,797
  • total de envios concluídos: aumentou de 2 para 3

O otimizador encontrou uma solução mais barata porque as restrições de janela de tempo foram relaxadas em comparação com o exemplo anterior.

Por fim, a propriedade metrics.costs também inclui uma nova chave para indicar o custo real incorrido com base no produto da restrição e o período em que a janela de entrega foi perdida. Ou seja:

  • costPerHourBeforeSoftStartTime de 2,0 e
  • o tempo entre a entrega real e o início do período: 2,83583 horas

Resultado:

model.shipments.deliveries.time_windows.cost_per_hour_before_soft_start_time: 5,6716666666666669.

Essas métricas permitem fazer uma análise de custo para saber a troca entre restrições rígidas e flexíveis, que podem ser usadas para ajustar as restrições de acordo com suas regras de negócios específicas. Nesse caso, o custo total é menor que shipment[1].penalty_cost de 20,0. Otimizador identificou que é mais econômico entregar o envio mais cedo do que pular o envio.