您可以使用 ML Kit 辨識圖片或影片中的文字,例如路標。這項功能的主要特徵如下:
文字辨識 v2 API | |
---|---|
說明 | 識別圖像或影片中的文字,支援拉丁文、中文、梵文字母、日文和韓文指令碼,以及多種語言。 |
SDK 名稱 | GoogleMLKit/TextRecognition |
實作中 | 建構期間,資產以靜態方式連結至您的應用程式 |
應用程式大小影響 | 每個指令碼 SDK 約 38 MB |
成效 | 在拉丁字母 SDK 的大多數裝置上即時顯示,使用情境較慢。 |
立即體驗
事前準備
- 在 Podfile 中加入下列 ML Kit pod:
# To recognize Latin script pod 'GoogleMLKit/TextRecognition', '3.2.0' # To recognize Chinese script pod 'GoogleMLKit/TextRecognitionChinese', '3.2.0' # To recognize Devanagari script pod 'GoogleMLKit/TextRecognitionDevanagari', '3.2.0' # To recognize Japanese script pod 'GoogleMLKit/TextRecognitionJapanese', '3.2.0' # To recognize Korean script pod 'GoogleMLKit/TextRecognitionKorean', '3.2.0'
- 安裝或更新專案的 Pod 後,請使用其
.xcworkspace
開啟 Xcode 專案。Xcode 12.4 以上版本支援 ML Kit。
1. 建立 TextRecognizer
的執行個體
呼叫 +textRecognizer(options:)
來傳遞 TextRecognizer
的執行個體,並傳遞您在上方宣告的依附元件相關選項:
Swift
// When using Latin script recognition SDK let latinOptions = TextRecognizerOptions() let latinTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Chinese script recognition SDK let chineseOptions = ChineseTextRecognizerOptions() let chineseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Devanagari script recognition SDK let devanagariOptions = DevanagariTextRecognizerOptions() let devanagariTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Japanese script recognition SDK let japaneseOptions = JapaneseTextRecognizerOptions() let japaneseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Korean script recognition SDK let koreanOptions = KoreanTextRecognizerOptions() let koreanTextRecognizer = TextRecognizer.textRecognizer(options:options)
Objective-C
// When using Latin script recognition SDK MLKTextRecognizerOptions *latinOptions = [[MLKTextRecognizerOptions alloc] init]; MLKTextRecognizer *latinTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Chinese script recognition SDK MLKChineseTextRecognizerOptions *chineseOptions = [[MLKChineseTextRecognizerOptions alloc] init]; MLKTextRecognizer *chineseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Devanagari script recognition SDK MLKDevanagariTextRecognizerOptions *devanagariOptions = [[MLKDevanagariTextRecognizerOptions alloc] init]; MLKTextRecognizer *devanagariTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Japanese script recognition SDK MLKJapaneseTextRecognizerOptions *japaneseOptions = [[MLKJapaneseTextRecognizerOptions alloc] init]; MLKTextRecognizer *japaneseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Korean script recognition SDK MLKKoreanTextRecognizerOptions *koreanOptions = [[MLKKoreanTextRecognizerOptions alloc] init]; MLKTextRecognizer *koreanTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options];
2. 準備輸入圖片
將圖片以UIImage
或 CMSampleBufferRef
傳遞至 TextRecognizer
的 process(_:completion:)
方法:使用 UIImage
或 CMSampleBuffer
建立 VisionImage
物件。
如果您使用 UIImage
,請按照下列步驟操作:
- 使用
UIImage
建立VisionImage
物件。請務必指定正確的.orientation
。Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
如果您使用 CMSampleBuffer
,請按照下列步驟操作:
-
指定
CMSampleBuffer
中包含的圖片資料方向。如何取得圖片方向:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- 使用
CMSampleBuffer
物件和方向建立VisionImage
物件:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. 處理圖片
接著,將圖片傳遞至 process(_:completion:)
方法:
Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // Error handling return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(MLKText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // Error handling return; } // Recognized text }];
4. 從已辨識的文字區塊擷取文字
如果文字辨識作業成功,系統會傳回 Text
物件。Text
物件內含在圖片中辨識的完整文字,以及零或多個 TextBlock
物件。
每個 TextBlock
都代表一個文字區塊的矩形區塊,內含零或多個 TextLine
物件。每個 TextLine
物件都包含零個或多個 TextElement
物件,這代表一個字詞和字詞相似的實體,例如日期和數字。
您可以針對每個 TextBlock
、TextLine
和 TextElement
物件,取得該區域識別的文字,以及該區域的定界座標。
例如:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (MLKTextBlock *block in result.blocks) { NSString *blockText = block.text; NSArray<MLKTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (MLKTextLine *line in block.lines) { NSString *lineText = line.text; NSArray<MLKTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (MLKTextElement *element in line.elements) { NSString *elementText = element.text; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
輸入圖片規範
-
為讓機器學習套件能準確辨識文字,輸入圖片必須包含足夠的像素資料。在理想情況下,每個字元至少要有 16x16 像素。一般來說,長度超過 24x24 像素的字元通常沒有準確性。
舉例來說,640x480 的圖片也許可以掃描佔用圖片完整寬度的名片。如要掃描印在紙張上的文件,你可能需要提供 720x1280 像素的圖片。
-
圖片品質不佳可能會影響文字辨識的準確度。如果未收到可接受的結果,請嘗試要求使用者重新拍攝圖片。
-
如果您要在即時應用程式中辨識文字,應考慮輸入圖片的整體尺寸。系統會加快處理小型圖片的速度。如要縮短延遲時間,請確保文字佔用了圖片的大小,並以較低的解析度拍攝圖片 (請注意上述的準確率規定)。詳情請參閱「改善效能的秘訣」。
改善成效的訣竅
- 如要處理影片畫面,請使用偵測工具的
results(in:)
同步 API。從AVCaptureVideoDataOutputSampleBufferDelegate
的captureOutput(_, didOutput:from:)
函式呼叫這個方法,以同步取得指定影片畫面的結果。保留AVCaptureVideoDataOutput
的alwaysDiscardsLateVideoFrames
,以便true
限制對偵測工具的呼叫。偵測器執行時,如果偵測到新的影片畫面,就會遭到捨棄。 - 如果您使用偵測工具的輸出內容在輸入圖片上疊加圖片,請先透過 ML Kit 取得結果,然後在單一步驟中顯示圖片和疊加層。這樣一來,每個處理的輸入影格只會轉譯一次至顯示途徑。如需範例,請參閱 ML Kit 快速入門導覽課程範例中的 updatePreviewOverlayViewWithLastFrame。
- 建議以較低解析度拍攝圖片。但請注意,這個 API 的圖片尺寸規定。
- 為避免效能降低,請勿同時以不同的指令碼選項同時執行多個
TextRecognizer
執行個體。