您可以使用機器學習套件辨識圖片或影片中的文字,例如路標的文字。這項功能的主要特徵如下:
文字辨識 API | |
---|---|
說明 | 辨識圖片或影片中的拉丁字母文字。 |
SDK 名稱 | GoogleMLKit/TextRecognition (version 2.2.0) |
實作 | 在建構期間,資產會以靜態方式連結至您的應用程式。 |
應用程式大小影響 | 大約 20 MB |
效能 | 在多數裝置上即時執行。 |
立即體驗
事前準備
- 在 Podfile 中加入下列機器學習套件 Pod:
pod 'GoogleMLKit/TextRecognition','2.2.0'
- 安裝或更新專案的 Pod 後,使用
.xcworkspace
開啟 Xcode 專案。Xcode 12.4 以上版本支援機器學習套件。
1. 建立 TextRecognizer
的執行個體
呼叫 +textRecognizer
來建立 TextRecognizer
的執行個體:Swift
let textRecognizer = TextRecognizer.textRecognizer()
Objective-C
MLKTextRecognizer *textRecognizer = [MLKTextRecognizer textRecognizer];
2. 準備輸入圖片
將圖片做為UIImage
或 CMSampleBufferRef
傳遞至 TextRecognizer
的 process(_:completion:)
方法:
使用 UIImage
或 CMSampleBuffer
建立 VisionImage
物件。
如果您使用 UIImage
,請按照下列步驟操作:
- 使用
UIImage
建立VisionImage
物件。請務必指定正確的.orientation
。Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
如果您使用 CMSampleBuffer
,請按照下列步驟操作:
-
指定
CMSampleBuffer
中包含的圖片資料方向。如何取得圖片方向:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- 使用
CMSampleBuffer
物件和方向建立VisionImage
物件:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. 處理圖片
接著,將圖片傳送至 process(_:completion:)
方法:
Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // Error handling return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(MLKText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // Error handling return; } // Recognized text }];
4. 從已辨識的文字區塊擷取文字
如果文字辨識作業成功,系統會傳回 Text
物件。Text
物件包含圖像中辨識的完整文字,以及零或多個 TextBlock
物件。
每個 TextBlock
都是矩形文字區塊,其中包含零個或多個 TextLine
物件。每個 TextLine
物件都包含零個或多個 TextElement
物件,這些物件代表字詞和類似實體的實體,例如日期和數字。
針對各個 TextBlock
、TextLine
和 TextElement
物件,您可以取得系統辨識的區域和邊界座標。
例如:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (MLKTextBlock *block in result.blocks) { NSString *blockText = block.text; NSArray<MLKTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (MLKTextLine *line in block.lines) { NSString *lineText = line.text; NSArray<MLKTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (MLKTextElement *element in line.elements) { NSString *elementText = element.text; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
輸入圖片規範
-
為了讓機器學習套件能正確識別文字,輸入圖片必須包含以足夠像素資料呈現的文字。在理想情況下,每個字元至少應為 16x16 像素。一般來說,如果字元大於 24x24 像素,通常就沒有準確率。
例如,640x480 圖片可能有助於掃描佔滿圖片寬度的名片。如要掃描以字母大小列印的文件,您可能需要提供 720x1280 像素的圖片。
-
圖片焦點不佳可能會影響文字辨識的準確度。如果無法收到可接受的結果,請嘗試請使用者重新擷取圖片。
-
如果您要在即時應用程式中辨識文字,應考慮輸入圖片的整體尺寸。較小型的影像處理速度較快。為了縮短延遲時間,請確保文字會盡可能佔用最多圖片,並以較低解析度擷取圖片 (請注意上述的準確率規定)。如需詳細資訊,請參閱效能改善提示。
改善成效的訣竅
- 如要處理影格,請使用偵測工具的
results(in:)
同步 API。從AVCaptureVideoDataOutputSampleBufferDelegate
的captureOutput(_, didOutput:from:)
函式呼叫此方法,即可同步取得特定影片影格的結果。將AVCaptureVideoDataOutput
的alwaysDiscardsLateVideoFrames
保留為true
,以限制對偵測工具的呼叫。假如在偵測器執行期間有新的視訊畫面可用,系統就會捨棄該影格。 - 如果您使用偵測工具的輸出內容,為輸入圖片上的圖像重疊,請先透過 ML Kit 取得結果,然後透過單一步驟算繪圖像和疊加層。如此一來,每個處理的輸入影格只會轉譯一次到顯示途徑一次。如需範例,請參閱 ML Kit 快速入門導覽課程範例中的 updatePreviewOverlayViewWithLastFrame。
- 請考慮以較低的解析度拍照。同時也請注意,此 API 的圖片尺寸規定。