Android'de ML Kit ile selfie segmentasyonu

ML Kit, selfie segmentasyonu için optimize edilmiş bir SDK sunar.

Selfie Segmenter öğeleri, derleme sırasında uygulamanıza statik olarak bağlıdır. Bu seçim, uygulama indirme boyutunu yaklaşık 4,5 MB artırır. API gecikmesi, giriş resminin boyutuna bağlı olarak Pixel 4'te 25 ms. ile 65 ms. arasında değişebilir.

Deneyin

Başlamadan önce

  1. Proje düzeyindeki build.gradle dosyanıza, hem buildscript hem de allprojects bölümlerinize Google'ın Maven deposunu eklediğinizden emin olun.
  2. ML Kit Android kitaplıklarının bağımlılıklarını, modülünüzün uygulama düzeyindeki gradle dosyasına ekleyin. Bu dosya genellikle app/build.gradle türündedir:
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta5'
}

1. Segmenter örneği oluşturma

Segmenter seçenekleri

Bir görüntü üzerinde segmentasyon yapmak için önce aşağıdaki seçenekleri belirterek Segmenter öğesinin bir örneğini oluşturun.

Algılayıcı Modu

Segmenter, iki modda çalışır. Kullanım alanınıza uygun seçeneği seçtiğinizden emin olun.

STREAM_MODE (default)

Bu mod, video veya kameradan kare akışı gerçekleştirmek için tasarlanmıştır. Bu modda segmenter, daha yumuşak segmentasyon sonuçları döndürmek için önceki karelerin sonuçlarından yararlanır.

SINGLE_IMAGE_MODE

Bu mod, alakalı olmayan tek resimler için tasarlanmıştır. Bu modda, segmentleyici her resmi kareler üzerinde yumuşatma olmadan bağımsız olarak işler.

Ham boyut maskesini etkinleştir

Segmenterden, model çıkış boyutuyla eşleşen işlenmemiş boyut maskesini döndürmesini ister.

İşlenmemiş maske boyutu (ör. 256x256) genellikle giriş resmi boyutundan küçüktür. Bu seçeneği etkinleştirirken maske boyutunu almak için lütfen SegmentationMask#getWidth() ve SegmentationMask#getHeight() çağrılarını yapın.

Bu seçenek belirtilmediğinde, segmentleyici ham maskeyi giriş resmi boyutuyla eşleşecek şekilde yeniden ölçeklendirir. Özelleştirilmiş yeniden ölçeklendirme mantığı uygulamak istiyorsanız veya kullanım alanınız için yeniden ölçeklendirme gerekmiyorsa bu seçeneği kullanabilirsiniz.

Segmenter seçeneklerini belirtin:

Kotlin

val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()

Java

SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

Segmenter örneği oluşturun. Belirttiğiniz seçenekleri iletin:

Kotlin

val segmenter = Segmentation.getClient(options)

Java

Segmenter segmenter = Segmentation.getClient(options);

2. Giriş resmini hazırlama

Bir görüntü üzerinde segmentasyon gerçekleştirmek için Bitmap, media.Image, ByteBuffer, bayt dizisi veya cihazdaki bir dosyadan InputImage nesnesi oluşturun.

Farklı kaynaklardan InputImage nesnesi oluşturabilirsiniz. Bu nesnelerin her biri aşağıda açıklanmıştır.

media.Image kullanarak

media.Image nesnesinden InputImage nesnesi oluşturmak için (örneğin, cihaz kamerasından resim çekerken) media.Image nesnesini ve görüntünün dönüşünü InputImage.fromMediaImage() yönüne geçirin.

KameraX kitaplığını kullanırsanız OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini sizin için hesaplar.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Resmin dönüş derecesini gösteren bir kamera kitaplığı kullanmıyorsanız cihazın dönüş derecesinden ve cihazdaki kamera sensörünün yönünden hesaplayabilirsiniz:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Ardından media.Image nesnesini ve döndürme derecesi değerini InputImage.fromMediaImage() öğesine geçirin:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Dosya URI'si kullanarak

Dosya URI'sinden bir InputImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath() öğesine iletin. Bu, kullanıcıdan galeri uygulamasından resim seçmesini istemek için ACTION_GET_CONTENT niyeti kullandığınızda yararlı olur.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer veya ByteArray kullanarak

ByteBuffer veya ByteArray öğesinden InputImage nesnesi oluşturmak için önce media.Image girişi için daha önce açıklandığı gibi resim döndürme derecesini hesaplayın. Ardından, resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle birlikte arabellek veya diziyle InputImage nesnesini oluşturun:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap kullanarak

Bitmap nesnesinden InputImage nesnesi oluşturmak için aşağıdaki bildirimi yapın:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Resim, döndürme dereceleriyle birlikte bir Bitmap nesnesiyle temsil edilir.

3. Resmi işleyin

Hazırlanan InputImage nesnesini Segmenter öğesinin process yöntemine iletin.

Kotlin

Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

Java

Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Segmentasyon sonucunu alma

Segmentasyon sonucunu aşağıdaki gibi alabilirsiniz:

Kotlin

val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}

Java

ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

Segmentasyon sonuçlarının nasıl kullanılacağına dair tam bir örnek için lütfen ML Kiti hızlı başlangıç örneğine bakın.

Performansı artırmaya yönelik ipuçları

Sonuçlarınızın kalitesi, giriş resminin kalitesine bağlıdır:

  • Makine Öğrenimi Kiti'nin doğru bir segmentasyon sonucu alabilmesi için görüntünün en az 256x256 piksel boyutunda olması gerekir.
  • Kötü bir resim odağı, doğruluğu da etkileyebilir. Kabul edilebilir sonuçlar almıyorsanız kullanıcıdan resmi yeniden çekmesini isteyin.

Segmentasyonu gerçek zamanlı bir uygulamada kullanmak istiyorsanız en iyi kare hızlarına ulaşmak için aşağıdaki yönergeleri uygulayın:

  • STREAM_MODE hesabını kullan.
  • Görüntüleri daha düşük çözünürlükte çekmeyi düşünün. Ancak bu API'nin resim boyutu şartlarını da göz önünde bulundurun.
  • Ham boyut maskesi seçeneğini etkinleştirip tüm yeniden ölçeklendirme mantığını bir arada kullanabilirsiniz. Örneğin, API'nin önce giriş resminizin boyutuyla eşleşmesi için maskeyi yeniden ölçeklendirmesine izin vermek yerine, ardından görüntülü reklam için görüntüleme boyutuyla eşleşecek şekilde tekrar ölçeklendirmek yerine, işlenmemiş boyut maskesini isteyin ve bu iki adımı tek bir adımda birleştirin.
  • Camera veya camera2 API kullanıyorsanız algılayıcıya yapılan çağrıları azaltın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek için hızlı başlangıç örnek uygulamasındaki VisionProcessorBase sınıfına göz atın.
  • CameraX API'yi kullanıyorsanız karşı basınç stratejisinin varsayılan değerine ( ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST) ayarlandığından emin olun. Bu, aynı anda yalnızca bir resmin analiz için gönderilmesini garanti eder. Analiz aracı meşgulken daha fazla görüntü üretilirse bu görüntüler otomatik olarak bırakılır ve teslim edilmek üzere sıraya alınmaz. Analiz edilen resim ImageProxy.close() çağrısı yapılarak kapatıldıktan sonra, bir sonraki son resim yayınlanır.
  • Algılayıcının çıkışını, giriş görüntüsünün üzerine grafik yerleştirmek için kullanırsanız önce ML Kit'ten sonucu alın, ardından görüntüyü oluşturun ve tek bir adımda bindirme yapın. Bu, her bir giriş karesi için görüntü yüzeyinde yalnızca bir kez oluşturulur. Örnek için hızlı başlangıç örnek uygulamasındaki CameraSourcePreview ve GraphicOverlay sınıflarına göz atın.
  • Camera2 API'yi kullanıyorsanız görüntüleri ImageFormat.YUV_420_888 biçiminde çekin. Eski Kamera API'sini kullanıyorsanız görüntüleri ImageFormat.NV21 biçiminde çekin.