ML Kit 為自拍區隔提供最佳化的 SDK。
Selfie Segmenter 素材資源會在建構期間以靜態方式連結至您的應用程式。 這會使您的應用程式下載大小增加約 4.5 MB,且 API 延遲時間可能會 時間從 25 毫秒至 65 毫秒,視輸入的圖片大小而定,計算依據為 Pixel 手機 4.
立即試用
- 使用範例應用程式試試 請查看此 API 的使用範例。
事前準備
- 在專案層級的
build.gradle
檔案中,請務必在buildscript
和allprojects
區段中納入 Google 的 Maven 存放區。 - 將 ML Kit Android 程式庫的依附元件新增至模組的應用程式層級的 Gradle 檔案,通常為
app/build.gradle
:
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. 建立 Segmenter 例項
區隔工具選項
如要對圖片進行區隔,請先指定下列選項,建立 Segmenter
的執行個體。
偵測器模式
Segmenter
會在兩種模式下運作。請務必選擇符合您用途的選項。
STREAM_MODE (default)
這個模式是專為串流播放影片或相機畫面而設計。在這個模式中,分段器會利用先前影格的結果,傳回更順暢的區隔結果。
SINGLE_IMAGE_MODE
這個模式是為使用相互無關的單張圖片而設計。在這個模式下,片段器會獨立處理每張圖片,避免影格出現平滑的情形。
啟用原始大小遮罩
要求分割器傳回與模型輸出大小相符的原始大小遮罩。
原始遮罩的大小 (例如 256x256) 通常小於輸入的圖片大小。啟用這個選項時,請呼叫 SegmentationMask#getWidth()
和 SegmentationMask#getHeight()
取得遮罩大小。
如未指定這個選項,分段器會重新調整原始遮罩的大小,以符合輸入的圖片大小。如果您要套用自訂的資源調度邏輯,或不需要重新調整資源配置,建議使用這個選項。
指定區隔工具選項:
Kotlin
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
Java
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
建立 Segmenter
的執行個體。傳送您指定的選項:
Kotlin
val segmenter = Segmentation.getClient(options)
Java
Segmenter segmenter = Segmentation.getClient(options);
2. 準備輸入圖片
如要對圖片執行區隔,請建立 InputImage
物件
從 Bitmap
、media.Image
、ByteBuffer
、位元組陣列或
裝置。
您可以建立InputImage
不同來源的 ANR 物件,說明如下。
使用 media.Image
如要建立InputImage
物件,例如從 media.Image
物件擷取圖片
裝置的相機,請傳遞 media.Image
物件和映像檔的
旋轉為 InputImage.fromMediaImage()
。
如果您使用
CameraX 程式庫、OnImageCapturedListener
和
ImageAnalysis.Analyzer
類別會計算旋轉值
不必確保憑證管理是否適當
因為 Google Cloud 會為您管理安全性
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
如果您沒有使用相機程式庫提供圖片的旋轉角度, 可根據裝置的旋轉角度和相機方向來計算 感應器:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
然後,請傳遞 media.Image
物件和
將度數值旋轉為 InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
使用檔案 URI
如要建立InputImage
物件,將應用程式結構定義與檔案 URI 傳遞至
InputImage.fromFilePath()
。如果您要
使用 ACTION_GET_CONTENT
意圖提示使用者選取
取自圖片庫應用程式中的圖片。
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
使用 ByteBuffer
或 ByteArray
如要建立InputImage
ByteBuffer
或 ByteArray
的物件,請先計算圖片
與先前 media.Image
輸入中所述的旋轉角度相同。
接著,使用緩衝區或陣列建立 InputImage
物件,以及
高度、寬度、顏色編碼格式以及旋轉角度:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
使用 Bitmap
如要建立InputImage
物件中,Bitmap
物件,請做出以下宣告:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
圖像以 Bitmap
物件和旋轉角度表示。
3. 處理圖片
將準備好的 InputImage
物件傳遞至 Segmenter
的 process
方法。
Kotlin
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. 取得區隔結果
您可以透過下列方式取得區隔結果:
Kotlin
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
Java
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
有關如何使用區隔結果的完整範例,請參閱 ML Kit 快速入門導覽課程範例。
提升成效的訣竅
結果的品質取決於輸入圖片的品質:
- 為了讓 ML Kit 取得準確的區隔結果,圖片至少應為 256x256 像素。
- 圖像對焦品質不佳也可能會影響準確度。如果您未能取得可接受的結果,請要求使用者重新拍攝圖片。
如要在即時應用程式中使用區隔,請遵循下列準則,以便達到最佳的影格速率:
- 使用
STREAM_MODE
。 - 建議以較低的解析度拍攝圖片。不過,也請留意這個 API 的圖片尺寸規定。
- 考慮啟用原始大小遮罩選項,並結合所有縮放邏輯。舉例來說,與其先讓 API 重新調整遮罩來配合輸入圖片大小,然後再根據畫面顯示的檢視畫面大小重新縮放,只要將這兩個步驟結合成一個步驟即可。
- 如果您使用
Camera
或camera2
API、 限制對偵測工具的呼叫如果影片有新影片 影格掉落時,表示影格是否可用。詳情請參閱VisionProcessorBase
類別的範例。 - 如果您是使用
CameraX
API, 請務必將背壓策略設為預設值ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
。 這麼做可保證系統一次只會傳送一張圖片進行分析。如果圖片較多 會在分析器忙碌時產生,這些作業會自動遭到捨棄,不會排入佇列 廣告放送。以呼叫方式關閉要分析的圖片後 ImageProxy.close(),最新一張圖片才會放送。 - 如果使用偵測工具的輸出內容將圖像重疊
先從 ML Kit 取得結果,然後算繪圖片
並疊加單一步驟這會轉譯至顯示介面
每個輸入影格只能建立一次詳情請參閱
CameraSourcePreview
和 如需範例,請前往快速入門導覽課程範例應用程式中的GraphicOverlay
類別。 - 如果你使用 Camera2 API,
ImageFormat.YUV_420_888
格式。如果使用舊版 Camera API,請以ImageFormat.NV21
格式。