機器學習套件提供兩個經過最佳化的姿勢 SDK。
SDK 名稱 | 姿勢偵測 | 姿勢偵測準確性 |
---|---|---|
實作 | 程式碼和資產在建構時會以靜態方式連結至您的應用程式。 | 程式碼和資產在建構時會以靜態方式連結至您的應用程式。 |
應用程式大小影響 (包括程式碼和素材資源) | 約 10.1 MB | 約 13.3 MB |
效能 | Pixel 3 XL:約 30 FPS | Pixel 3XL:CPU 約 23 FPS,GPU 約 30 FPS |
立即體驗
- 請試用範例應用程式,查看這個 API 的使用範例。
事前準備
- 在您的專案層級的
build.gradle
檔案中,請務必在buildscript
和allprojects
區段中加入 Google 的 Maven 存放區。 將 ML Kit Android 程式庫的依附元件新增至模組的應用程式層級 Gradle 檔案 (通常為
app/build.gradle
):dependencies { // If you want to use the base sdk implementation 'com.google.mlkit:pose-detection:18.0.0-beta3' // If you want to use the accurate sdk implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta3' }
1. 建立 PoseDetector
的執行個體
PoseDetector
種付款方式
如要偵測圖片中的姿勢,請先建立 PoseDetector
的執行個體,並視需要指定偵測工具設定。
偵測模式
PoseDetector
在兩種偵測模式下運作。請務必根據您的用途選擇合適的選項。
STREAM_MODE
(預設)- 姿勢偵測器會先偵測圖片中最顯眼的人物,然後執行姿勢偵測。在後續的影格中,除非使用者被遮住或不再有信心偵測到的跡象,否則系統不會執行人為偵測步驟。姿勢偵測器會嘗試追蹤最顯著的人物,並在每次推論時傳回其姿勢。這麼做可縮短延遲時間和平滑偵測。如要偵測影片串流中的姿勢,請使用這個模式。
SINGLE_IMAGE_MODE
- 姿勢偵測器會偵測人物,然後執行姿勢偵測。系統會針對每張圖片執行人物偵測步驟,因此延遲時間會較長,且不會追蹤使用者。對靜態圖像使用姿勢偵測,或不想進行追蹤時,請使用此模式。
硬體設定
PoseDetector
支援多項硬體設定,以改善效能:
CPU
:僅使用 CPU 執行偵測工具CPU_GPU
:同時使用 CPU 和 GPU 執行偵測工具
建構偵測工具選項時,您可以使用 API setPreferredHardwareConfigs
來控制硬體選項。所有硬體設定都預設為偏好狀態。
ML Kit 會考量每個設定的可用性、穩定性、正確性和延遲時間,然後從偏好設定中挑選出最佳設定。如果沒有適用的設定,CPU
設定會自動做為備用設定使用。啟用加速功能之前,機器學習套件會以非封鎖的方式執行這些檢查和相關準備作業,因此很可能是使用者第一次執行偵測工具時,使用 CPU
。完成所有準備工作後,系統會在下列執行作業中使用最佳設定。
setPreferredHardwareConfigs
的使用範例:
- 為了讓機器學習套件選擇最佳設定,請勿呼叫此 API。
- 如果您不想啟用任何加速功能,請只傳入
CPU
。 - 如果您想使用 GPU 卸載 CPU (即使 GPU 速度可能較慢),請只傳入
CPU_GPU
。
指定姿勢偵測工具選項:
Kotlin
// Base pose detector with streaming frames, when depending on the pose-detection sdk val options = PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build() // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk val options = AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build()
Java
// Base pose detector with streaming frames, when depending on the pose-detection sdk PoseDetectorOptions options = new PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build(); // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk AccuratePoseDetectorOptions options = new AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build();
最後,建立 PoseDetector
的執行個體。傳送您指定的選項:
Kotlin
val poseDetector = PoseDetection.getClient(options)
Java
PoseDetector poseDetector = PoseDetection.getClient(options);
2. 準備輸入圖片
如要偵測圖片中的姿勢,請透過 Bitmap
、media.Image
、ByteBuffer
、位元組陣列或裝置上的檔案建立 InputImage
物件。然後將 InputImage
物件傳遞至 PoseDetector
。
為偵測姿勢,請使用大小至少為 480x360 像素的圖片。如果您是即時偵測姿勢,以這個最低解析度擷取影格有助於縮短延遲時間。
您可以從不同來源建立 InputImage
物件,以下將分別說明。
使用 media.Image
如要從 media.Image
物件建立 InputImage
物件 (例如從裝置相機拍攝圖片時),請將 media.Image
物件和圖片旋轉至 InputImage.fromMediaImage()
。
如果使用 CameraX 程式庫,OnImageCapturedListener
和 ImageAnalysis.Analyzer
類別會為您計算旋轉值。
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
如果您使用的相機程式庫會提供圖片旋轉角度,則可從裝置的旋轉度和裝置相機感應器的方向計算,如下所示:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
接著,將 media.Image
物件和旋轉度值傳送至 InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
使用檔案 URI
如要透過檔案 URI 建立 InputImage
物件,請將應用程式結構定義和檔案 URI 傳遞至 InputImage.fromFilePath()
。當您利用 ACTION_GET_CONTENT
意圖提示使用者從圖片庫應用程式中選取圖片時,這項功能就非常實用。
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
使用 ByteBuffer
或 ByteArray
如要透過 ByteBuffer
或 ByteArray
建立 InputImage
物件,請先按照先前針對 media.Image
輸入內容所述的圖像旋轉度數計算。接著使用緩衝區或陣列來建立 InputImage
物件,並搭配圖片的高度、寬度、顏色編碼格式和旋轉度數:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
使用 Bitmap
如要透過 Bitmap
物件建立 InputImage
物件,請進行以下宣告:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
此圖像以 Bitmap
物件表示,並以旋轉度數表示。
3. 處理圖片
將事先準備的 InputImage
物件傳遞至 PoseDetector
的 process
方法。
Kotlin
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener( new OnSuccessListener<Pose>() { @Override public void onSuccess(Pose pose) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. 取得偵測到姿勢的相關資訊
如果在圖片中偵測到人物,姿勢偵測 API 會傳回含有 33 PoseLandmark
的 Pose
物件。
如果圖像不完全位於圖片內,這個模型會將缺少的地標座標指派給外框外,並提供較低的 InFrameConfidence 值。
如果沒有在頁框中偵測到任何人,Pose
物件就不會包含 PoseLandmark
。
Kotlin
// Get all PoseLandmarks. If no person was detected, the list will be empty val allPoseLandmarks = pose.getAllPoseLandmarks() // Or get specific PoseLandmarks individually. These will all be null if no person // was detected val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER) val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER) val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW) val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW) val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST) val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST) val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP) val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP) val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE) val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE) val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE) val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE) val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY) val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY) val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX) val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX) val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB) val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB) val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL) val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL) val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX) val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX) val nose = pose.getPoseLandmark(PoseLandmark.NOSE) val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER) val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE) val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER) val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER) val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE) val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER) val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR) val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR) val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH) val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)
Java
// Get all PoseLandmarks. If no person was detected, the list will be empty List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks(); // Or get specific PoseLandmarks individually. These will all be null if no person // was detected PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER); PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER); PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW); PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW); PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST); PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST); PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP); PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP); PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE); PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE); PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE); PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE); PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY); PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY); PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX); PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX); PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB); PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB); PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL); PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL); PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX); PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX); PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE); PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER); PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE); PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER); PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER); PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE); PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER); PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR); PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR); PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH); PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);
改善成效的訣竅
搜尋結果的品質取決於輸入圖片的品質:
- 為了讓機器學習套件能正確偵測姿勢,圖片中的人應使用足夠的像素資料;為了獲得最佳效能,拍攝目標至少應為 256x256 像素。
- 如果在即時應用程式中偵測姿勢,建議您考慮輸入圖片的整體尺寸。系統可以更快處理較小的圖片,因此為了縮短延遲時間,請以較低解析度擷取圖片,但請留意前述的解析度規定,並確保拍攝主體盡量呈現圖片。
- 圖片品質不佳也可能會影響準確率。如果沒有收到可接受的結果,請要求使用者重新拍攝圖片。
如果您想在即時應用程式中使用姿勢偵測,請遵守下列規範,以達到最佳影格速率:
- 使用基礎姿勢偵測 SDK 和
STREAM_MODE
。 - 請考慮以較低的解析度拍照。同時也要注意此 API 圖片尺寸規定。
- 如果您使用的是
Camera
或camera2
API,請呼叫偵測工具。如果有新的影片畫面在偵測工具執行時可供使用,請捨棄該影格。如需範例,請參閱快速入門導覽課程範例應用程式中的VisionProcessorBase
類別。 - 如果您使用
CameraX
API,請確認背壓策略已設為預設值ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
。這麼做可確保系統每次只會傳送一張圖片進行分析。如果在分析器處於忙碌狀態時產生更多圖片,系統會自動捨棄這些圖片,不會排入佇列。透過呼叫 ImageProxy.close() 將所分析的圖片關閉之後,即可提供下一張最新的圖片。 - 如果您使用偵測工具的輸出內容,為輸入圖片上的圖像重疊,請先透過 ML Kit 取得結果,然後透過單一步驟算繪圖像和疊加層。每個輸入框只會向顯示途徑轉譯一次。如需範例,請參閱快速入門導覽課程範例應用程式中的
CameraSourcePreview
和GraphicOverlay
類別。 - 如果您使用 Camera2 API,請以
ImageFormat.YUV_420_888
格式擷取圖片。如果您使用的是舊版 Camera API,請以ImageFormat.NV21
格式擷取圖片。
後續步驟
- 如要瞭解如何使用姿勢地標將姿勢分類,請參閱姿勢分類提示。