ตรวจจับท่าทางด้วย ML Kit บน Android

ML Kit มี SDK 2 รายการที่ปรับให้เหมาะสมสําหรับการตรวจจับท่าทาง

ชื่อ SDKpose-detectionpose-detection-accurate
การใช้งานโค้ดและชิ้นงานจะลิงก์กับแอปแบบคงที่ ณ เวลาที่สร้างโค้ดและชิ้นงานจะลิงก์กับแอปแบบคงที่ ณ เวลาที่สร้าง
ผลกระทบต่อขนาดแอป (รวมถึงโค้ดและชิ้นงาน)~10.1MB~13.3MB
ประสิทธิภาพPixel 3XL: ~30FPSPixel 3XL: ~23 FPS เมื่อใช้ CPU, ~30 FPS เมื่อใช้ GPU

ลองเลย

ก่อนเริ่มต้น

  1. ในไฟล์ build.gradle ระดับโปรเจ็กต์ ให้ตรวจสอบว่าได้ใส่ที่เก็บ Maven ของ Google ไว้ทั้งในส่วน buildscript และ allprojects
  2. เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit สำหรับ Android ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งโดยปกติจะเป็น app/build.gradle

    dependencies {
      // If you want to use the base sdk
      implementation 'com.google.mlkit:pose-detection:18.0.0-beta5'
      // If you want to use the accurate sdk
      implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5'
    }
    

1. สร้างอินสแตนซ์ของ PoseDetector

PoseDetector ตัวเลือก

หากต้องการตรวจจับท่าทางในรูปภาพ ก่อนอื่นให้สร้างอินสแตนซ์ของ PoseDetector แล้วระบุการตั้งค่าเครื่องตรวจจับ (ไม่บังคับ)

โหมดการตรวจจับ

PoseDetector ทำงานในโหมดการตรวจจับ 2 โหมด โปรดตรวจสอบว่าคุณเลือกรายการที่ตรงกับกรณีการใช้งาน

STREAM_MODE (ค่าเริ่มต้น)
ตัวตรวจจับท่าทางจะตรวจหาบุคคลที่โดดเด่นที่สุดในรูปภาพก่อน จากนั้นจึงจะเรียกใช้การตรวจจับท่าทาง ในเฟรมต่อๆ ไป ระบบจะไม่ทำขั้นตอนการตรวจจับบุคคล เว้นแต่ว่าบุคคลจะบดบังหรือตรวจจับด้วยความเชื่อมั่นสูงไม่ได้อีกต่อไป ตัวตรวจจับท่าทางจะพยายามติดตามบุคคลที่โดดเด่นที่สุดและแสดงท่าทางของบุคคลนั้นในการอนุมานแต่ละครั้ง ซึ่งจะช่วยลดเวลาในการตอบสนองและทำให้การตรวจจับราบรื่น ใช้โหมดนี้เมื่อต้องการตรวจจับท่าทางในสตรีมวิดีโอ
SINGLE_IMAGE_MODE
ตัวตรวจจับท่าทางจะตรวจจับบุคคล จากนั้นจะเรียกใช้การตรวจจับท่าทาง ขั้นตอนการตรวจจับบุคคลจะทำงานกับรูปภาพทุกรูป ดังนั้นเวลาในการตอบสนองจะนานขึ้นและไม่มีการติดตามบุคคล ใช้โหมดนี้เมื่อใช้การตรวจจับท่าทางในรูปภาพนิ่งหรือไม่ต้องการการติดตาม

การกำหนดค่าฮาร์ดแวร์

PoseDetector รองรับการกำหนดค่าฮาร์ดแวร์หลายรูปแบบเพื่อเพิ่มประสิทธิภาพ ดังนี้

  • CPU: เรียกใช้เครื่องตรวจจับโดยใช้ CPU เท่านั้น
  • CPU_GPU: เรียกใช้เครื่องตรวจจับโดยใช้ทั้ง CPU และ GPU

เมื่อสร้างตัวเลือกเครื่องตรวจจับ คุณสามารถใช้ API setPreferredHardwareConfigs เพื่อควบคุมการเลือกฮาร์ดแวร์ได้ โดยค่าเริ่มต้น ระบบจะตั้งค่าการกำหนดค่าฮาร์ดแวร์ทั้งหมดเป็นค่าที่ต้องการ

ML Kit จะพิจารณาความพร้อมใช้งาน ความเสถียร ความถูกต้อง และเวลาในการตอบสนองของการกำหนดค่าแต่ละรายการ แล้วเลือกค่าที่ดีที่สุดจากการกำหนดค่าที่ต้องการ หากไม่มีการกำหนดค่าที่ต้องการ ระบบจะใช้การกำหนดค่า CPU โดยอัตโนมัติเป็นค่าสำรอง ML Kit จะทําการตรวจสอบและเตรียมการที่เกี่ยวข้องเหล่านี้ในลักษณะที่ไม่บล็อกก่อนที่จะเปิดใช้การเร่งความเร็วใดๆ ดังนั้นผู้ใช้จึงมีแนวโน้มที่จะใช้ CPU เป็นครั้งแรกเมื่อเรียกใช้เครื่องตรวจจับ หลังจากการเตรียมการเสร็จสิ้นแล้ว ระบบจะใช้การกําหนดค่าที่ดีที่สุดในการเรียกใช้ครั้งถัดไป

ตัวอย่างการใช้ setPreferredHardwareConfigs

  • หากต้องการให้ ML Kit เลือกการกำหนดค่าที่ดีที่สุด อย่าเรียกใช้ API นี้
  • หากไม่ต้องการเปิดใช้การเร่งใดๆ ให้ส่งเฉพาะ CPU
  • หากต้องการใช้ GPU เพื่อแบ่งเบาภาระของ CPU แม้ว่า GPU จะทำงานช้ากว่าก็ตาม ให้ส่งเฉพาะ CPU_GPU

ระบุตัวเลือกตัวตรวจจับท่าทาง

Kotlin

// Base pose detector with streaming frames, when depending on the pose-detection sdk
val options = PoseDetectorOptions.Builder()
    .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
    .build()

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
val options = AccuratePoseDetectorOptions.Builder()
    .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
    .build()

Java

// Base pose detector with streaming frames, when depending on the pose-detection sdk
PoseDetectorOptions options =
   new PoseDetectorOptions.Builder()
       .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
       .build();

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
AccuratePoseDetectorOptions options =
   new AccuratePoseDetectorOptions.Builder()
       .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
       .build();

สุดท้าย ให้สร้างอินสแตนซ์ของ PoseDetector ส่งตัวเลือกที่คุณระบุ

Kotlin

val poseDetector = PoseDetection.getClient(options)

Java

PoseDetector poseDetector = PoseDetection.getClient(options);

2. เตรียมรูปภาพอินพุต

หากต้องการตรวจหาท่าทางในรูปภาพ ให้สร้างออบเจ็กต์ InputImage จาก Bitmap, media.Image, ByteBuffer, อาร์เรย์ไบต์ หรือไฟล์ในอุปกรณ์ จากนั้นส่งออบเจ็กต์ InputImage ไปยัง PoseDetector

สำหรับการตรวจจับท่าทาง คุณควรใช้รูปภาพที่มีขนาดอย่างน้อย 480x360 พิกเซล หากคุณกำลังตรวจจับท่าทางแบบเรียลไทม์ การจับเฟรมที่ความละเอียดขั้นต่ำนี้จะช่วยลดความล่าช้าได้

คุณสร้างออบเจ็กต์ InputImage ได้จากแหล่งที่มาต่างๆ ซึ่งแต่ละแหล่งที่มามีคำอธิบายอยู่ด้านล่าง

การใช้ media.Image

หากต้องการสร้างออบเจ็กต์ InputImage จากออบเจ็กต์ media.Image เช่น เมื่อคุณจับภาพจากกล้องของอุปกรณ์ ให้ส่งออบเจ็กต์ media.Image และการหมุนของรูปภาพไปยัง InputImage.fromMediaImage()

หากคุณใช้ไลบรารี CameraX คลาส OnImageCapturedListener และ ImageAnalysis.Analyzer จะคํานวณค่าการหมุนให้คุณ

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

หากไม่ได้ใช้คลังกล้องที่ระบุองศาการหมุนของรูปภาพ คุณสามารถคำนวณองศาการหมุนจากองศาการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์ได้โดยทำดังนี้

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

จากนั้นส่งออบเจ็กต์ media.Image และค่าองศาการหมุนไปยัง InputImage.fromMediaImage() ดังนี้

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

การใช้ URI ของไฟล์

หากต้องการสร้างออบเจ็กต์ InputImage จาก URI ของไฟล์ ให้ส่งผ่านบริบทแอปและ URI ของไฟล์ไปยัง InputImage.fromFilePath() ซึ่งจะมีประโยชน์เมื่อคุณใช้ Intent ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรี

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

การใช้ ByteBuffer หรือ ByteArray

หากต้องการสร้างออบเจ็กต์ InputImage จาก ByteBuffer หรือ ByteArray ก่อนอื่นให้คำนวณองศาการหมุนของรูปภาพตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image จากนั้นสร้างออบเจ็กต์ InputImage ด้วยบัฟเฟอร์หรืออาร์เรย์ พร้อมกับความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

การใช้ Bitmap

หากต้องการสร้างออบเจ็กต์ InputImageจากออบเจ็กต์ Bitmap ให้ประกาศดังนี้

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

รูปภาพแสดงด้วยวัตถุ Bitmap พร้อมองศาการหมุน

3. ประมวลผลรูปภาพ

ส่งออบเจ็กต์ InputImage ที่เตรียมไว้ไปยังเมธอด process ของ PoseDetector

Kotlin

Task<Pose> result = poseDetector.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

Java

Task<Pose> result =
        poseDetector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<Pose>() {
                            @Override
                            public void onSuccess(Pose pose) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. ดูข้อมูลเกี่ยวกับท่าทางที่ตรวจพบ

หากตรวจพบบุคคลในรูปภาพ Pose Detection API จะแสดงผลPose ออบเจ็กต์ที่มี PoseLandmark 33 รายการ

หากบุคคลไม่ได้อยู่ในรูปภาพทั้งหมด โมเดลจะกำหนดพิกัดจุดสังเกตที่ขาดหายไปไว้นอกเฟรมและให้ค่า InFrameConfidence ต่ำ

หากไม่พบบุคคลในเฟรม Pose ออบเจ็กต์จะไม่มี PoseLandmark

Kotlin

// Get all PoseLandmarks. If no person was detected, the list will be empty
val allPoseLandmarks = pose.getAllPoseLandmarks()

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER)
val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER)
val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW)
val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW)
val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST)
val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST)
val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP)
val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP)
val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE)
val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE)
val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE)
val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE)
val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY)
val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY)
val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX)
val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX)
val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB)
val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB)
val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL)
val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL)
val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX)
val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX)
val nose = pose.getPoseLandmark(PoseLandmark.NOSE)
val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER)
val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE)
val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER)
val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER)
val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE)
val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER)
val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR)
val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR)
val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH)
val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)

Java

// Get all PoseLandmarks. If no person was detected, the list will be empty
List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks();

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER);
PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER);
PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW);
PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW);
PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST);
PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST);
PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP);
PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP);
PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE);
PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE);
PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE);
PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE);
PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY);
PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY);
PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX);
PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX);
PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB);
PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB);
PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL);
PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL);
PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX);
PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX);
PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE);
PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER);
PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE);
PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER);
PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER);
PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE);
PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER);
PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR);
PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR);
PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH);
PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);

เคล็ดลับในการปรับปรุงประสิทธิภาพ

คุณภาพของผลลัพธ์ขึ้นอยู่กับคุณภาพของรูปภาพอินพุต ดังนี้

  • ML Kit จะตรวจจับท่าทางได้อย่างแม่นยำก็ต่อเมื่อบุคคลในรูปภาพแสดงด้วยข้อมูลพิกเซลที่เพียงพอ โดยควรมีขนาดอย่างน้อย 256x256 พิกเซลเพื่อให้ได้ประสิทธิภาพที่ดีที่สุด
  • หากตรวจจับท่าทางในแอปพลิเคชันแบบเรียลไทม์ คุณอาจต้องพิจารณาถึงขนาดโดยรวมของรูปภาพอินพุตด้วย ระบบจะประมวลผลรูปภาพขนาดเล็กได้เร็วขึ้น ดังนั้นให้จับภาพที่มีความละเอียดต่ำเพื่อลดเวลาในการตอบสนอง แต่อย่าลืมคำนึงถึงข้อกำหนดด้านความละเอียดข้างต้นและตรวจสอบว่าวัตถุอยู่ในรูปภาพมากที่สุด
  • โฟกัสของรูปภาพไม่ดีก็อาจส่งผลต่อความถูกต้องได้เช่นกัน หากไม่ได้ผลลัพธ์ที่ยอมรับได้ ให้ขอให้ผู้ใช้ถ่ายภาพอีกครั้ง

หากต้องการใช้การตรวจจับท่าทางในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามหลักเกณฑ์ต่อไปนี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด

  • ใช้ SDK การตรวจจับท่าทางพื้นฐานและ STREAM_MODE
  • ลองถ่ายภาพด้วยความละเอียดต่ำลง อย่างไรก็ตาม โปรดคำนึงถึงข้อกำหนดเกี่ยวกับขนาดรูปภาพของ API นี้ด้วย
  • หากคุณใช้ Camera หรือ camera2 API ให้จำกัดการเรียกใช้เครื่องตรวจจับ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่ตัวตรวจจับทำงานอยู่ ให้วางเฟรม ดูตัวอย่างได้จากคลาส VisionProcessorBase ในแอปตัวอย่างการเริ่มต้นใช้งาน
  • หากคุณใช้ CameraX API ให้ตรวจสอบว่าได้ตั้งค่ากลยุทธ์การลดแรงดันเป็นค่าเริ่มต้นแล้ว ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST วิธีนี้ช่วยให้มั่นใจว่าจะมีการส่งรูปภาพเพียงรูปเดียวเพื่อการวิเคราะห์ในแต่ละครั้ง หากมีการสร้างรูปภาพเพิ่มเติมเมื่อเครื่องมือวิเคราะห์ไม่ว่าง ระบบจะทิ้งรูปภาพเหล่านั้นโดยอัตโนมัติและจะไม่จัดคิวเพื่อนำส่ง เมื่อปิดรูปภาพที่กำลังวิเคราะห์โดยการเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป
  • หากคุณใช้เอาต์พุตของตัวตรวจจับเพื่อวางกราฟิกซ้อนทับบนรูปภาพอินพุต ให้รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพและวางซ้อนในขั้นตอนเดียว การดำเนินการนี้จะแสดงผลบนพื้นผิวการแสดงผลเพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม ดูตัวอย่างได้จากคลาส CameraSourcePreview และ GraphicOverlay ในแอปตัวอย่างการเริ่มต้นใช้งาน
  • หากคุณใช้ Camera2 API ให้จับภาพในรูปแบบ ImageFormat.YUV_420_888 หากคุณใช้ Camera API เวอร์ชันเก่า ให้ถ่ายภาพในรูปแบบ ImageFormat.NV21

ขั้นตอนถัดไป