Android पर एमएल किट से पोज़ का पता लगाएं

ML Kit, पोज़ का पता लगाने के लिए दो ऑप्टिमाइज़ किए गए SDK टूल उपलब्ध कराता है.

SDK टूल का नामआसन की पहचानpose-detection-accurate
लागू करनाकोड और ऐसेट, बिल्ड के समय आपके ऐप्लिकेशन से स्टैटिक तौर पर लिंक होती हैं.बिल्ड के दौरान, कोड और ऐसेट आपके ऐप्लिकेशन से स्टैटिक रूप से लिंक होती हैं.
ऐप्लिकेशन के साइज़ का असर (कोड और एसेट के साथ)~10.1 एमबी~13.3 एमबी
परफ़ॉर्मेंसPixel 3XL: ~30 FPS (फ़्रेम प्रति सेकंड)Pixel 3XL: सीपीयू के साथ ~23 FPS, जीपीयू के साथ ~30 FPS

इसे आज़माएं

शुरू करने से पहले

  1. प्रोजेक्ट-लेवल की build.gradle फ़ाइल में, buildscript और allprojects, दोनों सेक्शन में Google की मेवन रिपॉज़िटरी शामिल करना न भूलें.
  2. अपने मॉड्यूल की ऐप्लिकेशन-लेवल की Gradle फ़ाइल में ML Kit Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें, जो आम तौर पर app/build.gradle होती है:

    dependencies {
      // If you want to use the base sdk
      implementation 'com.google.mlkit:pose-detection:18.0.0-beta5'
      // If you want to use the accurate sdk
      implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5'
    }
    

1. PoseDetector का इंस्टेंस बनाएं

PoseDetector विकल्प

किसी इमेज में पोज़ का पता लगाने के लिए, सबसे पहले PoseDetector का एक इंस्टेंस बनाएं और ज़रूरत पड़ने पर, डिटेक्टर की सेटिंग तय करें.

पहचान मोड

PoseDetector, ऑब्जेक्ट की पहचान करने के दो मोड में काम करता है. पक्का करें कि आपने वही विकल्प चुना है जो मिलता-जुलता है आपके इस्तेमाल का उदाहरण.

STREAM_MODE (डिफ़ॉल्ट)
पोज़ डिटेक्टर पहले, प्रमुख व्यक्ति को चुनें और फिर पोज़ डिटेक्शन चलाएं. बाद के फ़्रेम में, व्यक्ति की पहचान करने का तरीका तब तक नहीं चलाया जाएगा, जब तक व्यक्ति जो अब भरोसेमंद नहीं होते या अब पूरे भरोसे के साथ नहीं दिखते. पोज़ डिटेक्टर, सबसे प्रमुख व्यक्ति को ट्रैक करने की कोशिश करेगा और हर अनुमान में उसका पोज़ दिखाएगा. इससे इंतज़ार का समय कम हो जाता है और ऑब्जेक्ट का पता लगाने में आसानी होती है. इस मोड का इस्तेमाल तब करें, जब वीडियो स्ट्रीम में पोज़ का पता लगाना हो.
SINGLE_IMAGE_MODE
पोज़ डिटेक्टर, किसी व्यक्ति का पता लगाएगा और फिर पोज़ का पता लगाएगा. व्यक्ति की पहचान करने की प्रोसेस हर इमेज के लिए चलेगी. इसलिए, इंतज़ार का समय ज़्यादा होगा और व्यक्ति को ट्रैक नहीं किया जा सकेगा. पोज़ का इस्तेमाल करते समय इस मोड का इस्तेमाल करें पता लगाने की सुविधा का इस्तेमाल करें या जहां ट्रैकिंग की ज़रूरत नहीं है.

हार्डवेयर कॉन्फ़िगरेशन

ऑप्टिमाइज़ करने के लिए, PoseDetector में कई हार्डवेयर कॉन्फ़िगरेशन काम करते हैं परफ़ॉर्मेंस:

  • CPU: सिर्फ़ सीपीयू का इस्तेमाल करके डिटेक्टर चलाएं
  • CPU_GPU: सीपीयू और जीपीयू, दोनों का इस्तेमाल करके डिटेक्टर चलाएं

डिटेक्टर के विकल्प बनाते समय, एपीआई का इस्तेमाल किया जा सकता है चुने गए हार्डवेयर को कंट्रोल करने के लिए, setPreferredHardwareConfigs. डिफ़ॉल्ट रूप से, सभी हार्डवेयर कॉन्फ़िगरेशन को पसंदीदा के तौर पर सेट किया जाता है.

एमएल किट हर कॉन्फ़िगरेशन की उपलब्धता, स्थिरता, उसके सटीक होने, और इंतज़ार के समय के हिसाब से काम करती है ध्यान दें और पसंदीदा कॉन्फ़िगरेशन में से सबसे अच्छा विकल्प चुनें. अगर इनमें से कोई नहीं पसंदीदा कॉन्फ़िगरेशन लागू है, इसलिए CPU कॉन्फ़िगरेशन का इस्तेमाल अपने-आप किया जाएगा फ़ॉलबैक के तौर पर इस्तेमाल किया जा सकता है. एमएल किट ये जांच करेगी और इससे जुड़ी तैयारी करेगी से कोई चीज़ नहीं बनाई जाती, इसलिए यह तरीका अपनाया जा सकता है. जब आपका उपयोगकर्ता डिटेक्टर को पहली बार चलाएगा, तो वह CPU का इस्तेमाल करेगा. आखिरकार, सभी तैयारी पूरी होती है, तो नीचे दिए गए रनों में सबसे अच्छे कॉन्फ़िगरेशन का इस्तेमाल किया जाएगा.

setPreferredHardwareConfigs के इस्तेमाल के उदाहरण:

  • ML Kit को सबसे अच्छा कॉन्फ़िगरेशन चुनने दें. इसके लिए, इस एपीआई को कॉल न करें.
  • अगर आपको कोई भी त्वरण चालू नहीं करना है, तो सिर्फ़ CPU पास करें.
  • अगर आपको सीपीयू को ऑफ़लोड करने के लिए जीपीयू का इस्तेमाल करना है, भले ही जीपीयू धीमा हो, तो सिर्फ़ CPU_GPU को पास करें.

पोज़ डिटेक्टर के विकल्पों की जानकारी दें:

Kotlin

// Base pose detector with streaming frames, when depending on the pose-detection sdk
val options = PoseDetectorOptions.Builder()
    .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
    .build()

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
val options = AccuratePoseDetectorOptions.Builder()
    .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
    .build()

Java

// Base pose detector with streaming frames, when depending on the pose-detection sdk
PoseDetectorOptions options =
   new PoseDetectorOptions.Builder()
       .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
       .build();

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
AccuratePoseDetectorOptions options =
   new AccuratePoseDetectorOptions.Builder()
       .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
       .build();

आखिर में, PoseDetector का एक इंस्टेंस बनाएं. आपने जो विकल्प तय किए हैं उन्हें पास करें:

Kotlin

val poseDetector = PoseDetection.getClient(options)

Java

PoseDetector poseDetector = PoseDetection.getClient(options);

2. इनपुट इमेज तैयार करना

किसी इमेज में पोज़ का पता लगाने के लिए, InputImage ऑब्जेक्ट बनाएं किसी Bitmap, media.Image, ByteBuffer, बाइट कलेक्शन से या डिवाइस. इसके बाद, InputImage ऑब्जेक्ट को PoseDetector पर पास करें.

पोज़ का पता लगाने के लिए, आपको ऐसी इमेज का इस्तेमाल करना चाहिए जिसके डाइमेंशन में कम से कम 480x360 पिक्सल. अगर रीयल टाइम में पोज़ का पता लगाया जा रहा है, तो इस कम से कम रिज़ॉल्यूशन पर फ़्रेम कैप्चर करने से, इंतज़ार का समय कम हो सकता है.

अलग-अलग सोर्स से InputImage ऑब्जेक्ट बनाया जा सकता है. इनमें से हर सोर्स के बारे में नीचे बताया गया है.

media.Image का इस्तेमाल करके

media.Image ऑब्जेक्ट से InputImage ऑब्जेक्ट बनाने के लिए, media.Image ऑब्जेक्ट और इमेज के रोटेशन को InputImage.fromMediaImage() में पास करें. ऐसा तब किया जाता है, जब किसी डिवाइस के कैमरे से इमेज कैप्चर की जाती है.

अगर आपको CameraX लाइब्रेरी, OnImageCapturedListener, और ImageAnalysis.Analyzer क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं आपके लिए.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

अगर आपने ऐसी कैमरा लाइब्रेरी का इस्तेमाल नहीं किया है जो इमेज के घूमने की डिग्री बताती है, तो डिवाइस के घूमने की डिग्री और डिवाइस में कैमरे के सेंसर के ओरिएंटेशन से इसका हिसाब लगाया जा सकता है:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

इसके बाद, media.Image ऑब्जेक्ट को पास करें और InputImage.fromMediaImage() डिग्री पर घुमाव:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

फ़ाइल के यूआरआई का इस्तेमाल करना

InputImage बनाने के लिए किसी फ़ाइल यूआरआई से ऑब्जेक्ट को जोड़ने के लिए, ऐप्लिकेशन संदर्भ और फ़ाइल यूआरआई को InputImage.fromFilePath(). यह तब काम आता है, जब उपयोगकर्ता को अपने गैलरी ऐप्लिकेशन से कोई इमेज चुनने के लिए कहने के लिए, ACTION_GET_CONTENT इंटेंट का इस्तेमाल किया जाता है.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer या ByteArray का इस्तेमाल करना

ByteBuffer या ByteArray से InputImage आइटम बनाने के लिए, सबसे पहले इमेज के घूमने की डिग्री का हिसाब लगाएं. यह हिसाब लगाने का तरीका, media.Image इनपुट के लिए पहले बताया गया है. इसके बाद, इमेज के साथ बफ़र या अरे का इस्तेमाल करके, InputImage ऑब्जेक्ट बनाएं ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन डिग्री:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap का इस्तेमाल करके

InputImage बनाने के लिए Bitmap ऑब्जेक्ट में बनाए गए ऑब्जेक्ट के लिए, यह एलान करें:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

इमेज को घुमाने की डिग्री के साथ Bitmap ऑब्जेक्ट से दिखाया जाता है.

3. इमेज प्रोसेस करें

तैयार किए गए InputImage ऑब्जेक्ट को PoseDetector के process तरीके में पास करें.

Kotlin

Task<Pose> result = poseDetector.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

Java

Task<Pose> result =
        poseDetector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<Pose>() {
                            @Override
                            public void onSuccess(Pose pose) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. पहचाने गए पोज़ के बारे में जानकारी पाएं

अगर इमेज में किसी व्यक्ति का पता चलता है, तो पोज़ का पता लगाने वाला एपीआई, 33 PoseLandmark के साथ Pose ऑब्जेक्ट दिखाता है.

अगर व्यक्ति इमेज में पूरी तरह से नहीं है, तो मॉडल फ़्रेम के बाहर मौजूद निर्देशांक कम कर देते हैं, ताकि InFrameConफ़िडेंस वैल्यू.

अगर फ़्रेम में कोई व्यक्ति नहीं मिला, तो Pose ऑब्जेक्ट में कोई PoseLandmark नहीं है.

Kotlin

// Get all PoseLandmarks. If no person was detected, the list will be empty
val allPoseLandmarks = pose.getAllPoseLandmarks()

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER)
val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER)
val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW)
val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW)
val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST)
val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST)
val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP)
val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP)
val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE)
val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE)
val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE)
val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE)
val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY)
val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY)
val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX)
val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX)
val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB)
val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB)
val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL)
val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL)
val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX)
val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX)
val nose = pose.getPoseLandmark(PoseLandmark.NOSE)
val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER)
val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE)
val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER)
val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER)
val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE)
val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER)
val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR)
val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR)
val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH)
val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)

Java

// Get all PoseLandmarks. If no person was detected, the list will be empty
List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks();

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER);
PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER);
PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW);
PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW);
PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST);
PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST);
PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP);
PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP);
PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE);
PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE);
PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE);
PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE);
PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY);
PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY);
PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX);
PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX);
PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB);
PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB);
PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL);
PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL);
PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX);
PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX);
PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE);
PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER);
PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE);
PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER);
PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER);
PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE);
PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER);
PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR);
PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR);
PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH);
PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);

परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह

नतीजों की क्वालिटी, इनपुट इमेज की क्वालिटी पर निर्भर करती है:

  • ML Kit को पोज़ का सटीक तरीके से पता लगाने के लिए, इमेज में व्यक्ति का ज़रूरत के मुताबिक पिक्सल डेटा होना चाहिए. बेहतर परफ़ॉर्मेंस के लिए, विषय का रिज़ॉल्यूशन कम से कम 256 x 256 पिक्सल होना चाहिए.
  • अगर आपको किसी रीयल-टाइम ऐप्लिकेशन में पोज़ का पता चलता है, तो इनपुट इमेज के कुल डाइमेंशन. छोटी इमेज को तेज़ी से प्रोसेस किया जा सकता है. इसलिए, इंतज़ार का समय कम करने के लिए, इमेज को कम रिज़ॉल्यूशन में कैप्चर करें. हालांकि, रिज़ॉल्यूशन से जुड़ी ऊपर दी गई ज़रूरी शर्तों को ध्यान में रखें और पक्का करें कि ऑब्जेक्ट, इमेज में ज़्यादा से ज़्यादा जगह ले रहा हो.
  • खराब इमेज फ़ोकस की वजह से भी सटीक जानकारी पर असर पड़ सकता है. अगर आपको सही नतीजे नहीं मिलते हैं, तो उपयोगकर्ता से इमेज फिर से लेने के लिए कहें.

अगर आपको रीयल-टाइम ऐप्लिकेशन में पोज़ डिटेक्शन का इस्तेमाल करना है, तो सबसे सही फ़्रेमरेट पाने के लिए, इन दिशा-निर्देशों का पालन करें:

  • बेस पोज़-डिटेक्शन SDK टूल और STREAM_MODE का इस्तेमाल करें.
  • कम रिज़ॉल्यूशन वाली इमेज कैप्चर करें. हालांकि, इस एपीआई के लिए इमेज के डाइमेंशन से जुड़ी ज़रूरी शर्तों का भी ध्यान रखें.
  • अगर Camera या camera2 एपीआई का इस्तेमाल किया जाता है, तो डिटेक्टर को कॉल को कम करें. अगर किसी नए वीडियो पर डिटेक्टर के चलने के दौरान फ़्रेम उपलब्ध हो जाता है, फ़्रेम छोड़ दें. देखें उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में VisionProcessorBase क्लास.
  • अगर CameraX एपीआई का इस्तेमाल किया जाता है, तो पक्का करें कि बैकप्रेशर की रणनीति, डिफ़ॉल्ट वैल्यू पर सेट हो ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. इससे यह गारंटी मिलती है कि विश्लेषण के लिए एक बार में सिर्फ़ एक इमेज डिलीवर की जाएगी. अगर और इमेज जब एनालाइज़र व्यस्त होता है, तो उसे जनरेट कर दिया जाता है. उसे अपने-आप ड्रॉप कर दिया जाता है. इसके बाद, उसे सूची में नहीं रखा जाता डिलीवरी. जिस इमेज की जांच की जा रही है उसे बंद करने के लिए, इस नंबर पर कॉल करें Imageप्रॉक्सी.close(), अगली सबसे नई इमेज डिलीवर की जाएगी.
  • अगर इनपुट इमेज पर ग्राफ़िक ओवरले करने के लिए, डिटेक्टर के आउटपुट का इस्तेमाल किया जाता है, तो पहले ML Kit से नतीजा पाएं. इसके बाद, एक ही चरण में इमेज को रेंडर करें और ओवरले करें. यह डिसप्ले की सतह पर रेंडर हो जाता है हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार. उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में CameraSourcePreview और GraphicOverlay क्लास देखें.
  • अगर Camera2 API का इस्तेमाल किया जा रहा है, तो इमेज को ImageFormat.YUV_420_888 फ़ॉर्मैट में कैप्चर करें. अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज को ImageFormat.NV21 फ़ॉर्मैट में कैप्चर करें.

अगले चरण