כשמעבירים תמונה לערכת ML, היא מזהה עד חמישה אובייקטים בתמונה וכן המיקום של כל אובייקט בתמונה. בעת זיהוי אובייקטים ב: וידאו בסטרימינג, לכל אובייקט יש מזהה ייחודי שאפשר להשתמש בו כדי לעקוב אחרי האובייקט ממסגרת למסגרת.
אפשר להשתמש במודל מותאם אישית לסיווג תמונות כדי לסווג את האובייקטים. זוהה. במודלים מותאמים אישית עם ערכת ML אפשר לקרוא הדרכה לגבי דרישות תאימות של מודלים, איפה למצוא מודלים שעברו אימון מראש, ואיך לאמן את המודלים שלכם.
יש שתי דרכים לשלב מודל מותאם אישית. אפשר לקבץ את המודל לפי להוסיף אותו לתיקיית הנכסים של האפליקציה, או שאפשר להוריד אותו באופן דינמי. מ-Firebase. בטבלה הבאה ניתן לראות השוואה בין שתי האפשרויות.
מודל בחבילה | מודל מתארח |
---|---|
המודל הוא חלק מה-APK של האפליקציה, ולכן הוא מגדיל את הגודל שלו. | המודל אינו חלק מה-APK שלך. כדי לארח את הסרטון, צריך להעלות אותו אל למידת מכונה ב-Firebase. |
המודל זמין באופן מיידי, גם כשמכשיר Android במצב אופליין | הורדת המודל מתבצעת על פי דרישה |
אין צורך בפרויקט Firebase | נדרש פרויקט Firebase |
צריך לפרסם מחדש את האפליקציה כדי לעדכן את המודל | דחיפת עדכוני מודל בלי לפרסם מחדש את האפליקציה |
אין בדיקות A/B מובנות | לבצע בדיקת A/B קלה ופשוטה באמצעות הגדרת תצורה מרחוק ב-Firebase |
רוצה לנסות?
- לעיון באפליקציית המדריך למתחילים לראייה לשימוש לדוגמה במודל החבילה, אפליקציית המדריך למתחילים של Automl עבור שימוש לדוגמה במודל המתארח.
- לצפייה בתצוגה של עיצוב חומרים (Material Design) אפליקציה להטמעה מקצה לקצה של ה-API הזה.
לפני שמתחילים
בקובץ
build.gradle
ברמת הפרויקט, חשוב לכלול מאגר Maven של Google גם ב-buildscript
וגםallprojects
קטעים.הוספת יחסי התלות של ספריות ML Kit Android למודול של המודול קובץ GRid ברמת האפליקציה, שהוא בדרך כלל
app/build.gradle
:לשילוב מודל עם האפליקציה:
dependencies { // ... // Object detection & tracking feature with custom bundled model implementation 'com.google.mlkit:object-detection-custom:17.0.2' }
כדי להוריד מודל באופן דינמי מ-Firebase, צריך להוסיף את הקוד
linkFirebase
של תלות:dependencies { // ... // Object detection & tracking feature with model downloaded // from firebase implementation 'com.google.mlkit:object-detection-custom:17.0.2' implementation 'com.google.mlkit:linkfirebase:17.0.0' }
אם אתם רוצים להוריד מודל, צריך לוודא מוסיפים את Firebase לפרויקט Android, אם עדיין לא עשיתם זאת. אין צורך לעשות זאת כשהמודל הוא חלק מחבילה.
1. טעינת המודל
הגדרת מקור למודל מקומי
כדי לצרף את המודל לאפליקציה:
מעתיקים את קובץ המודל (בדרך כלל מסתיים ב-
.tflite
או ב-.lite
) אל האפליקציה תיקייה אחת (assets/
). (ייתכן שקודם תצטרכו ליצור את התיקייה עד לוחצים לחיצה ימנית על התיקייהapp/
ואז לוחצים על חדש > תיקייה > תיקיית הנכסים).אחר כך צריך להוסיף את הפרטים הבאים לקובץ
build.gradle
של האפליקציה כדי לוודא Gradle לא דוחסת את קובץ המודל כשמפתחים את האפליקציה:android { // ... aaptOptions { noCompress "tflite" // or noCompress "lite" } }
קובץ המודל ייכלל בחבילת האפליקציה ויהיה זמין ל-ML Kit בתור נכס גולמי.
יוצרים אובייקט
LocalModel
, מציינים את הנתיב לקובץ המודל:Kotlin
val localModel = LocalModel.Builder() .setAssetFilePath("model.tflite") // or .setAbsoluteFilePath(absolute file path to model file) // or .setUri(URI to model file) .build()
Java
LocalModel localModel = new LocalModel.Builder() .setAssetFilePath("model.tflite") // or .setAbsoluteFilePath(absolute file path to model file) // or .setUri(URI to model file) .build();
הגדרת מקור מודל שמתארח ב-Firebase
כדי להשתמש במודל שמתארח מרחוק, צריך ליצור אובייקט CustomRemoteModel
באמצעות
FirebaseModelSource
, לציון השם שהקציתם למודל כש
פרסמה:
Kotlin
// Specify the name you assigned in the Firebase console. val remoteModel = CustomRemoteModel .Builder(FirebaseModelSource.Builder("your_model_name").build()) .build()
Java
// Specify the name you assigned in the Firebase console. CustomRemoteModel remoteModel = new CustomRemoteModel .Builder(new FirebaseModelSource.Builder("your_model_name").build()) .build();
לאחר מכן, מתחילים את המשימה של הורדת המודל, ומציינים את התנאים שבהם שרוצים לאפשר את ההורדה שלהם. אם הדגם לא נמצא במכשיר, או אם של המודל זמינה, המשימה תוריד באופן אסינכרוני מ-Firebase:
Kotlin
val downloadConditions = DownloadConditions.Builder() .requireWifi() .build() RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener { // Success. }
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder() .requireWifi() .build(); RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(@NonNull Task task) { // Success. } });
אפליקציות רבות מתחילות את משימת ההורדה בקוד האתחול שלהן, אבל תוכלו לעשות זאת בכל שלב לפני שתצטרכו להשתמש במודל.
2. הגדרת מזהה האובייקטים
אחרי שמגדירים את מקורות המודלים, מגדירים את מזהה האובייקטים
תרחיש לדוגמה עם אובייקט CustomObjectDetectorOptions
. אפשר לשנות את
ההגדרות הבאות:
הגדרות של מזהה אובייקטים | |
---|---|
מצב זיהוי |
STREAM_MODE (ברירת מחדל) | SINGLE_IMAGE_MODE
ב- ב- |
זיהוי של מספר אובייקטים ומעקב אחריהם |
false (ברירת מחדל) | true
האם לזהות ולעקוב אחר עד חמישה אובייקטים או רק את רובם אובייקט בולט (ברירת מחדל). |
סיווג אובייקטים |
false (ברירת מחדל) | true
האם לסווג את האובייקטים שזוהו באמצעות
מודל סיווג מותאם אישית. כדי להשתמש בסיווג מותאם אישית
צריך להגדיר אותו ל- |
סף מהימנות לסיווג |
ציון הסמך המינימלי של התוויות שזוהו. אם היא לא מוגדרת, כל ייעשה שימוש בסף המסווג שנקבע על ידי המטא-נתונים של המודל. אם המודל לא מכיל מטא-נתונים, או שהמטא-נתונים לא לציין סף סיווג, סף ברירת מחדל של 0.0 יהיה בשימוש. |
מקסימום תוויות לכל אובייקט |
מספר התוויות המקסימלי שהגלאי יקצה לכל אובייקט החזרה. אם המדיניות לא מוגדרת, המערכת תשתמש בערך ברירת המחדל 10. |
ה-API לזיהוי אובייקטים ולמעקב מותאם לשני השימושים העיקריים האלה במקרים:
- זיהוי בזמן אמת ומעקב אחרי האובייקט הבולט ביותר במצלמה את העינית.
- זיהוי של מספר אובייקטים מתמונה סטטית.
כדי להגדיר את ה-API לתרחישים לדוגמה האלה באמצעות מודל באריזה מקומית:
Kotlin
// Live detection and tracking val customObjectDetectorOptions = CustomObjectDetectorOptions.Builder(localModel) .setDetectorMode(CustomObjectDetectorOptions.STREAM_MODE) .enableClassification() .setClassificationConfidenceThreshold(0.5f) .setMaxPerObjectLabelCount(3) .build() // Multiple object detection in static images val customObjectDetectorOptions = CustomObjectDetectorOptions.Builder(localModel) .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() .setClassificationConfidenceThreshold(0.5f) .setMaxPerObjectLabelCount(3) .build() val objectDetector = ObjectDetection.getClient(customObjectDetectorOptions)
Java
// Live detection and tracking CustomObjectDetectorOptions customObjectDetectorOptions = new CustomObjectDetectorOptions.Builder(localModel) .setDetectorMode(CustomObjectDetectorOptions.STREAM_MODE) .enableClassification() .setClassificationConfidenceThreshold(0.5f) .setMaxPerObjectLabelCount(3) .build(); // Multiple object detection in static images CustomObjectDetectorOptions customObjectDetectorOptions = new CustomObjectDetectorOptions.Builder(localModel) .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() .setClassificationConfidenceThreshold(0.5f) .setMaxPerObjectLabelCount(3) .build(); ObjectDetector objectDetector = ObjectDetection.getClient(customObjectDetectorOptions);
אם יש לך מודל שמתארח מרחוק, עליך לבדוק שהוא
שהורדתם לפני שהפעלתם אותו. אפשר לבדוק את סטטוס ההורדה של המודל
באמצעות השיטה isModelDownloaded()
של מנהל המודלים.
צריך לאשר רק לפני שמפעילים את הגלאי, יש להם גם מודל שמתארח מרחוק וגם מודל בחבילות מקומיות, זה עלול ליצור לבצע את הבדיקה הזו כשיוצרים את גלאי התמונות: מהמודל המרוחק אם הוא הורד, אחרת.
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener { isDownloaded -> val optionsBuilder = if (isDownloaded) { CustomObjectDetectorOptions.Builder(remoteModel) } else { CustomObjectDetectorOptions.Builder(localModel) } val customObjectDetectorOptions = optionsBuilder .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableClassification() .setClassificationConfidenceThreshold(0.5f) .setMaxPerObjectLabelCount(3) .build() val objectDetector = ObjectDetection.getClient(customObjectDetectorOptions) }
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Boolean isDownloaded) { CustomObjectDetectorOptions.Builder optionsBuilder; if (isDownloaded) { optionsBuilder = new CustomObjectDetectorOptions.Builder(remoteModel); } else { optionsBuilder = new CustomObjectDetectorOptions.Builder(localModel); } CustomObjectDetectorOptions customObjectDetectorOptions = optionsBuilder .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableClassification() .setClassificationConfidenceThreshold(0.5f) .setMaxPerObjectLabelCount(3) .build(); ObjectDetector objectDetector = ObjectDetection.getClient(customObjectDetectorOptions); } });
אם יש לך רק מודל שמתארח מרחוק, עליך להשבית את התכונה שקשורה למודלים
פונקציונליות - לדוגמה, הצגה באפור או הסתרה של חלק מממשק המשתמש - עד
מוודאים שבוצעה הורדה של המודל. אפשר לעשות זאת על ידי צירוף listen
ל-method download()
של מנהל המודלים:
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener { // Download complete. Depending on your app, you could enable the ML // feature, or switch from the local model to the remote model, etc. }
Java
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Void v) { // Download complete. Depending on your app, you could enable // the ML feature, or switch from the local model to the remote // model, etc. } });
3. הכנת תמונת הקלט
יוצרים אובייקטInputImage
מהתמונה.
מזהה האובייקטים פועל ישירות מ-Bitmap
, מ-NV21 ByteBuffer
או
YUV_420_888 media.Image
. לבנות InputImage
מהמקורות האלה
מומלץ אם יש לך גישה ישירה לאחד מהם. אם בונים
InputImage
ממקורות אחרים, אנחנו נטפל בהמרה באופן פנימי עבור
עבורך, ויכול להיות שזה יהיה פחות יעיל.
אפשר ליצור InputImage
ממקורות שונים, מוסבר על כל אחד מהם בהמשך.
באמצעות media.Image
כדי ליצור InputImage
מאובייקט media.Image
, למשל כשמצלמים תמונה
המצלמה של המכשיר, מעבירים את האובייקט media.Image
ואת
ל-InputImage.fromMediaImage()
.
אם משתמשים
ספריית CameraX, OnImageCapturedListener
ImageAnalysis.Analyzer
מחלקות מחשבים את ערך הסבב
עבורך.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
אם לא משתמשים בספריית מצלמה שמאפשרת לקבוע את כיוון הסיבוב של התמונה, הוא יכול לחשב אותו על סמך זווית הסיבוב של המכשיר וכיוון המצלמה החיישן במכשיר:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
לאחר מכן, מעבירים את האובייקט media.Image
הערך של מעלה הסיבוב ל-InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
שימוש ב-URI של קובץ
כדי ליצור InputImage
מ-URI של קובץ, מעבירים את ההקשר של האפליקציה ואת ה-URI של הקובץ
InputImage.fromFilePath()
זה שימושי כאשר
צריך להשתמש ב-Intent ACTION_GET_CONTENT
כדי לבקש מהמשתמש לבחור
תמונה מאפליקציית הגלריה.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
שימוש ב-ByteBuffer
או ב-ByteArray
כדי ליצור InputImage
מ-ByteBuffer
או מ-ByteArray
, קודם צריך לחשב את התמונה
מעלות סיבוב כפי שתואר קודם לכן עבור קלט media.Image
.
אחר כך יוצרים את האובייקט InputImage
עם מאגר נתונים זמני או מערך, יחד עם
גובה, רוחב, פורמט קידוד צבעים ומידת סיבוב:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
באמצעות Bitmap
כדי ליצור InputImage
מאובייקט Bitmap
, צריך ליצור את ההצהרה הבאה:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
התמונה מיוצגת על ידי אובייקט Bitmap
ביחד עם מעלות סיבוב.
4. הפעלת מזהה האובייקטים
Kotlin
objectDetector .process(image) .addOnFailureListener(e -> {...}) .addOnSuccessListener(results -> { for (detectedObject in results) { // ... } });
Java
objectDetector .process(image) .addOnFailureListener(e -> {...}) .addOnSuccessListener(results -> { for (DetectedObject detectedObject : results) { // ... } });
5. אחזור מידע על אובייקטים מתויגים
אם הקריאה אל process()
תתבצע בהצלחה, תועבר רשימה של DetectedObject
אל
'המאזינים להצלחה'.
כל DetectedObject
מכיל את המאפיינים (properties) הבאים:
תיבה קשורה | Rect שמציין את המיקום של האובייקט
תמונה. |
||||||
מזהה לצורכי מעקב | מספר שלם שמזהה את האובייקט בתמונות. אפס SINGLE_IMAGE_מצב. | ||||||
תוויות |
|
Kotlin
// The list of detected objects contains one item if multiple // object detection wasn't enabled. for (detectedObject in results) { val boundingBox = detectedObject.boundingBox val trackingId = detectedObject.trackingId for (label in detectedObject.labels) { val text = label.text val index = label.index val confidence = label.confidence } }
Java
// The list of detected objects contains one item if multiple // object detection wasn't enabled. for (DetectedObject detectedObject : results) { Rect boundingBox = detectedObject.getBoundingBox(); Integer trackingId = detectedObject.getTrackingId(); for (Label label : detectedObject.getLabels()) { String text = label.getText(); int index = label.getIndex(); float confidence = label.getConfidence(); } }
הבטחת חוויית משתמש מעולה
כדי ליהנות מחוויית המשתמש הטובה ביותר, מומלץ לפעול לפי ההנחיות הבאות באפליקציה:
- ההצלחה של זיהוי אובייקטים תלויה במורכבות הוויזואלית של האובייקט. לחשבון כדי שניתן יהיה לזהות אובייקטים עם מעט מאוד מאפיינים חזותיים, כך שתתפוס חלק גדול יותר מהתמונה. צריך לספק למשתמשים הנחיות לגבי לתיעוד קלט שפועל בצורה טובה עם סוגי האובייקטים שאתם רוצים לזהות.
- כשמשתמשים בסיווג, אם רוצים לזהות אובייקטים שלא נופלים ישירות לקטגוריות הנתמכות, להטמיע טיפול מיוחד במקרים לא ידועים אובייקטים.
בנוסף, כדאי לעיין אפליקציית ML Kit Material Design עיצוב חומר איסוף תבניות לתכונות מבוססות-למידת מכונה.
Improving performance
כדי להשתמש בזיהוי אובייקטים באפליקציה בזמן אמת, צריך לפעול לפי השלבים הבאים: כדי להשיג את קצבי הפריימים הטובים ביותר:כשמשתמשים במצב סטרימינג באפליקציה בזמן אמת, אין להשתמש בכמה זיהוי אובייקטים, כי רוב המכשירים לא יוכלו לייצר קצבי פריימים מתאימים.
- אם משתמשים
Camera
אוcamera2
API, הפעלות של הגלאי באמצעות ויסות נתונים (throttle). אם מדובר בסרטון חדש הופכת לזמינה כשהגלאי פועל, משחררים את הפריים. לצפייהVisionProcessorBase
באפליקציה לדוגמה של המדריך למתחילים. - אם אתם משתמשים ב-API של
CameraX
, יש לוודא שאסטרטגיית הלחץ החוזר מוגדרת לערך ברירת המחדל שלהImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
כך אפשר להבטיח שרק תמונה אחת תוצג לניתוח בכל פעם. אם עוד תמונות שנוצרות כשהכלי לניתוח נתונים עמוס, הוא יוסר באופן אוטומטי ולא ימתין בתור משלוח. לאחר שהתמונה שמנתחת נסגרת על ידי קריאה ImageProxy.close(), התמונה האחרונה הבאה תישלח. - אם משתמשים בפלט של הגלאי כדי להציג גרפיקה בשכבת-על
מקבלים קודם את התוצאה מ-ML Kit ואז מעבדים את התמונה
וליצור שכבת-על בשלב אחד. הוא מוצג לפני השטח של המסך
פעם אחת בלבד לכל מסגרת קלט. לצפייה
CameraSourcePreview
וגםGraphicOverlay
, באפליקציה לדוגמה של המדריך למתחילים. - אם משתמשים ב- Camera2 API, מצלמים תמונות ב
פורמט של
ImageFormat.YUV_420_888
. אם משתמשים בגרסה הישנה של ה-API של המצלמה, מצלמים תמונות ב פורמט שלImageFormat.NV21
.