Wykrywanie i śledzenie obiektów za pomocą ML Kit na Androidzie

Za pomocą ML Kit możesz wykrywać i śledzić obiekty w kolejnych klatkach wideo.

Gdy przekazujesz obraz do ML Kit, wykrywa on maksymalnie 5 obiektów. wraz z położeniem każdego obiektu na obrazie. Podczas wykrywania obiektów w strumieni wideo, każdy obiekt ma unikalny identyfikator, którego możesz użyć do śledzenia od klatki do ramki. Możesz też opcjonalnie włączyć obiekt przybliżony klasyfikację, która oznacza etykietami obiekty o szerokim opisie kategorii.

Wypróbuj

Zanim zaczniesz

  1. W pliku build.gradle na poziomie projektu umieść dane Repozytorium Google Maven w środowiskach buildscript i Sekcje: allprojects.
  2. Dodaj zależności bibliotek ML Kit na Androida do biblioteki modułu plik Gradle na poziomie aplikacji, który zwykle ma wartość app/build.gradle:
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.1'
    
    }
    

1. Konfigurowanie detektora obiektów

Aby wykrywać i śledzić obiekty, najpierw utwórz instancję ObjectDetector i opcjonalnie określ wszelkie ustawienia detektora, które chcesz zmienić wartość domyślną.

  1. Skonfiguruj detektor obiektów na potrzeby swojego przypadku użycia za pomocą ObjectDetectorOptions obiekt. Możesz zmienić te ustawienia: ustawienia:

    Ustawienia wykrywania obiektów
    Tryb wykrywania STREAM_MODE (domyślna) | SINGLE_IMAGE_MODE

    W STREAM_MODE (domyślnie) działa wykrywacz obiektów. z małym czasem oczekiwania, ale mogą one dawać niepełne wyniki (np. nieokreślone ramki ograniczające lub etykiety kategorii) na pierwszych kilku na wywołania detektora. Poza tym za STREAM_MODE przypisuje do obiektów identyfikatory śledzenia, których można używać śledzić obiekty w ramkach. Użyj tego trybu, jeśli chcesz śledzić lub gdy ważne jest małe opóźnienie, np. podczas przetwarzania strumieniowania wideo w czasie rzeczywistym.

    W SINGLE_IMAGE_MODE detektor obiektów zwraca wynik po określeniu ramki ograniczającej obiektu. Jeśli także włącz klasyfikację, ponieważ zwraca wynik po ograniczeniu pole i etykieta kategorii są dostępne. W związku z tym opóźnienie wykrywania jest potencjalnie większe. Także za SINGLE_IMAGE_MODE, identyfikatory śledzenia nie są przypisane. Używaj w tym trybie, jeśli opóźnienia nie są krytyczne i nie chcesz częściowe wyniki.

    Wykrywanie i śledzenie wielu obiektów false (domyślna) | true

    Określa, czy można wykryć i śledzić do pięciu obiektów, czy tylko najbardziej. widoczny obiekt (domyślnie).

    Klasyfikowanie obiektów false (domyślna) | true

    Określa, czy należy sklasyfikować wykryte obiekty w przybliżonych kategoriach. Gdy ta opcja jest włączona, detektor obiektów klasyfikuje obiekty w następujące kategorie: moda, żywność, AGD, miejsc i roślin.

    Interfejs API wykrywania i śledzenia obiektów jest zoptymalizowany pod kątem tych dwóch podstawowych zastosowań przypadki:

    • Wykrywanie na żywo i śledzenie najbardziej widocznego obiektu w kamerze wizjer.
    • Wykrywanie wielu obiektów na obrazie statycznym.

    Aby skonfigurować interfejs API pod kątem tych przypadków użycia:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. Pobierz instancję ObjectDetector:

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. Przygotowywanie obrazu wejściowego

Aby wykrywać i śledzić obiekty, przekazuj obrazy do ObjectDetector process() instancji.

Wykrywacz obiektów działa bezpośrednio z Bitmap, NV21 ByteBuffer lub YUV_420_888 media.Image. Tworzę element InputImage z tych źródeł są zalecane, jeśli masz do nich bezpośredni dostęp. Jeśli tworzysz InputImage z innych źródeł, zajmiemy się konwersją dla Ciebie i może działać mniej wydajnie.

Dla każdej klatki filmu lub obrazu w sekwencji wykonaj te czynności:

Możesz utworzyć InputImage z różnych źródeł, każdy z nich objaśniamy poniżej.

Korzystanie z: media.Image

Aby utworzyć InputImage z obiektu media.Image, np. podczas przechwytywania obrazu z z aparatu urządzenia, przekaż obiekt media.Image i obiekt obrazu w kierunku InputImage.fromMediaImage().

Jeśli używasz tagu CameraX, OnImageCapturedListener oraz ImageAnalysis.Analyzer klasy obliczają wartość rotacji dla Ciebie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jeśli nie korzystasz z biblioteki aparatu, która określa kąt obrotu obrazu, może go obliczyć na podstawie stopnia obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Następnie przekaż obiekt media.Image oraz wartość stopnia obrotu na InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Za pomocą identyfikatora URI pliku

Aby utworzyć InputImage obiektu z identyfikatora URI pliku, przekaż kontekst aplikacji oraz identyfikator URI pliku do InputImage.fromFilePath() Jest to przydatne, gdy użyj intencji ACTION_GET_CONTENT, aby zachęcić użytkownika do wyboru obraz z aplikacji Galeria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Przy użyciu: ByteBuffer lub ByteArray

Aby utworzyć InputImage obiektu z ByteBuffer lub ByteArray, najpierw oblicz wartość obrazu stopień obrotu zgodnie z wcześniejszym opisem dla danych wejściowych media.Image. Następnie utwórz obiekt InputImage z buforem lub tablicą oraz wysokość, szerokość, format kodowania kolorów i stopień obrotu:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Korzystanie z: Bitmap

Aby utworzyć InputImage z obiektu Bitmap, wypełnij tę deklarację:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Obraz jest reprezentowany przez obiekt Bitmap wraz z informacją o obróceniu w stopniach.

3. Przetwarzanie obrazu

Przekaż obraz do metody process():

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Uzyskiwanie informacji o wykrytych obiektach

Jeśli wywołanie metody process() się powiedzie, do funkcji DetectedObject zostanie przekazana lista elementów typu DetectedObject słuchaczem sukcesu.

Każdy element DetectedObject zawiera te właściwości:

Ramka ograniczająca Rect, który wskazuje położenie obiektu w .
Identyfikator śledzenia Liczba całkowita, która identyfikuje obiekt na obrazach. Wartość null SINGLE_IMAGE_MODE.
Etykiety
Opis etykiety Opis tekstowy etykiety. Będzie to jeden ze znaków stałe zdefiniowane w zasadzie PredefinedCategory.
Indeks etykiety Indeks etykiety wśród wszystkich etykiet obsługiwanych przez do klasyfikatora. Będzie to jedna ze stałych liczb całkowitych zdefiniowanych w usłudze PredefinedCategory.
Poziom ufności etykiet Wartość ufności klasyfikacji obiektu.

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

Dbanie o wygodę użytkowników

Aby zadbać o wygodę użytkowników, przestrzegaj tych wytycznych:

  • Pomyślne wykrycie obiektu zależy od jego złożoności wizualnej. W są wykrywane, obiekty z niewielką liczbą funkcji wizualnych mogą wymagać aby zająć większą część obrazu. Należy dostarczyć użytkownikom wskazówki na temat tego, przechwytywanie danych wejściowych, które dobrze działają z rodzajami obiektów, które chcesz wykrywać.
  • Gdy używasz klasyfikacji, aby wykrywać obiekty, które nie wypadają do obsługiwanych kategorii, zastosować specjalną obsługę nieznanych obiektów.

Zapoznaj się też z Aplikacja prezentująca ML Kit Material Design oraz Material Design Kolekcja Wzorce funkcji opartych na systemach uczących się.

Improving performance

Jeśli chcesz używać wykrywania obiektów w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi instrukcjami wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:

  • Gdy używasz trybu strumieniowania w aplikacji działającej w czasie rzeczywistym, nie używaj wielu wykrywania obiektów, ponieważ większość urządzeń nie jest w stanie wygenerować odpowiedniej liczby klatek na sekundę.

  • Wyłącz klasyfikację, jeśli jej nie potrzebujesz.

  • Jeśli używasz tagu Camera lub camera2 API, ograniczanie wywołań detektora. Jeśli nowy film ramka stanie się dostępna, gdy detektor będzie aktywny, upuść ją. Zobacz VisionProcessorBase w przykładowej aplikacji z krótkim wprowadzeniem.
  • Jeśli używasz interfejsu API CameraX, upewnij się, że strategia obciążenia wstecznego jest ustawiona na wartość domyślną ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST Gwarantuje to, że do analizy zostanie dostarczony tylko 1 obraz naraz. Jeśli więcej obrazów generowane, gdy analizator jest zajęty, są usuwane automatycznie i nie są umieszczane w kolejce . Po zamknięciu analizowanego obrazu przez wywołanie ImageProxy.close(), zostanie wyświetlony następny najnowszy obraz.
  • Jeśli użyjesz danych wyjściowych detektora do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. Powoduje to wyrenderowanie na powierzchni wyświetlania tylko raz na każdą ramkę wejściową. Zobacz CameraSourcePreview i GraphicOverlay w przykładowej aplikacji z krótkim wprowadzeniem.
  • Jeśli korzystasz z interfejsu API Camera2, rób zdjęcia w Format: ImageFormat.YUV_420_888. Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w Format: ImageFormat.NV21.