Bilder mit ML Kit unter iOS mit Labels versehen

Sie können ML Kit verwenden, um in einem Bild erkannte Objekte mit Labels zu versehen. Das Standardmodell, das mit ML Kit unterstützt über 400 verschiedene Labels.

Jetzt ausprobieren

  • Probieren Sie die Beispiel-App aus, um sehen Sie sich ein Anwendungsbeispiel für diese API an.

Hinweis

  1. Fügen Sie die folgenden ML Kit-Pods in Ihre Podfile-Datei ein:
    pod 'GoogleMLKit/ImageLabeling', '15.5.0'
    
  2. Nachdem Sie die Pods Ihres Projekts installiert oder aktualisiert haben, öffnen Sie Ihr Xcode-Projekt mit dem .xcworkspace ML Kit wird ab Xcode-Version 12.4 unterstützt.

Jetzt können Sie den Bildern Labels hinzufügen.

1. Eingabebild vorbereiten

Erstellen Sie ein VisionImage-Objekt mithilfe von UIImage oder einem CMSampleBuffer

Wenn du ein UIImage verwendest, gehe so vor:

  • Erstellen Sie ein VisionImage-Objekt mit der UIImage. Geben Sie die richtige .orientation an.

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

Wenn du ein CMSampleBuffer verwendest, gehe so vor:

  • Geben Sie die Ausrichtung der Bilddaten an, die in der CMSampleBuffer

    So ermitteln Sie die Bildausrichtung:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Erstellen Sie ein VisionImage-Objekt mithilfe der CMSampleBuffer-Objekt und Ausrichtung:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

2. Labelersteller für Images konfigurieren und ausführen

Um Objekte in einem Bild mit einem Label zu versehen, übergeben Sie das VisionImage-Objekt an die Die Methode processImage() von ImageLabeler.

  1. Rufen Sie zuerst eine Instanz von ImageLabeler ab.

Swift

let labeler = ImageLabeler.imageLabeler()

// Or, to set the minimum confidence required:
// let options = ImageLabelerOptions()
// options.confidenceThreshold = 0.7
// let labeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKImageLabeler *labeler = [MLKImageLabeler imageLabeler];

// Or, to set the minimum confidence required:
// MLKImageLabelerOptions *options =
//         [[MLKImageLabelerOptions alloc] init];
// options.confidenceThreshold = 0.7;
// MLKImageLabeler *labeler =
//         [MLKImageLabeler imageLabelerWithOptions:options];
  1. Übergeben Sie dann das Bild an die Methode processImage():

Swift

labeler.process(image) { labels, error in
    guard error == nil, let labels = labels else { return }

    // Task succeeded.
    // ...
}

Objective-C

[labeler processImage:image
completion:^(NSArray *_Nullable labels,
            NSError *_Nullable error) {
   if (error != nil) { return; }

   // Task succeeded.
   // ...
}];

3. Informationen zu Objekten mit Label abrufen

Wenn das Labeling erfolgreich war, empfängt der Abschluss-Handler ein Array von ImageLabel-Objekte. Jedes ImageLabel-Objekt repräsentiert etwas, das im Bild beschriftet sind. Das Basismodell unterstützt über 400 verschiedene Labels. Sie können die Textbeschreibung jedes Labels abrufen, die unter allen von das Modell und den Konfidenzwert der Übereinstimmung. Beispiel:

Swift

for label in labels {
    let labelText = label.text
    let confidence = label.confidence
    let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
   NSString *labelText = label.text;
   float confidence = label.confidence;
   NSInteger index = label.index;
}

Tipps zum Verbessern der Leistung in Echtzeit

Wenn Sie Bilder in einer Echtzeitanwendung mit Labels versehen möchten, gehen Sie so vor: um optimale Framerates zu erzielen:

  • Verwenden Sie zum Verarbeiten von Videoframes die synchrone results(in:) API des Bildlabelerstellers. Anruf diese Methode aus dem AVCaptureVideoDataOutputSampleBufferDelegate <ph type="x-smartling-placeholder"></ph> captureOutput(_, didOutput:from:)-Funktion, um synchron Ergebnisse aus dem angegebenen Video abzurufen Frame. beibehalten von AVCaptureVideoDataOutput alwaysDiscardsLateVideoFrames als true, um Aufrufe an den Bildlabelersteller zu drosseln. Wenn ein neuer wenn der Videoframe verfügbar wird, während der Bildlabelersteller ausgeführt wird, wird er entfernt.
  • Wenn Sie die Ausgabe des Bildlabelerstellers verwenden, um Grafiken Eingabebild, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern Sie das Bild in einem Schritt übereinanderlegen. Dadurch rendern Sie auf der Anzeigeoberfläche pro verarbeitetem Eingabeframe nur einmal. Weitere Informationen finden Sie im Abschnitt updatePreviewOverlayViewWithLastFrame. im Beispiel der ML Kit-Kurzanleitung finden Sie ein Beispiel.