É possível usar o Kit de ML para rotular objetos reconhecidos em uma imagem. O modelo padrão fornecido com O kit de ML oferece suporte a mais de 400 rótulos diferentes.
Faça um teste
- Teste o app de exemplo para um exemplo de uso dessa API.
Antes de começar
- Inclua os seguintes pods do kit de ML no seu Podfile:
pod 'GoogleMLKit/ImageLabeling', '15.5.0'
- Depois de instalar ou atualizar os pods do seu projeto, abra o projeto Xcode usando o
.xcworkspace
: O Kit de ML é compatível com a versão 12.4 ou mais recente do Xcode.
Agora você já pode rotular imagens.
1. Preparar a imagem de entrada
Crie um objeto VisionImage
usando um UIImage
ou um
CMSampleBuffer
.
Se você usa um UIImage
, siga estas etapas:
- Crie um objeto
VisionImage
com oUIImage
. Especifique o.orientation
correto.Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Se você usa um CMSampleBuffer
, siga estas etapas:
-
Especifique a orientação dos dados da imagem contidos no
CMSampleBuffer
:Para saber qual é a orientação da imagem:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Crie um objeto
VisionImage
usando o Objeto e orientaçãoCMSampleBuffer
:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
2. Configurar e executar o rotulador de imagens
Para rotular objetos em uma imagem, transmita o objetoVisionImage
para o
Método processImage()
de ImageLabeler
.
- Primeiro, receba uma instância de
ImageLabeler
.
Swift
let labeler = ImageLabeler.imageLabeler() // Or, to set the minimum confidence required: // let options = ImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKImageLabeler *labeler = [MLKImageLabeler imageLabeler]; // Or, to set the minimum confidence required: // MLKImageLabelerOptions *options = // [[MLKImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // MLKImageLabeler *labeler = // [MLKImageLabeler imageLabelerWithOptions:options];
- Em seguida, transmita a imagem para o método
processImage()
:
Swift
labeler.process(image) { labels, error in guard error == nil, let labels = labels else { return } // Task succeeded. // ... }
Objective-C
[labeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (error != nil) { return; } // Task succeeded. // ... }];
3. Conseguir informações sobre os objetos rotulados
Se a rotulagem da imagem for bem-sucedida, o gerenciador de conclusão receberá uma matriz de
ImageLabel
. Cada objeto ImageLabel
representa algo que foi
rotuladas na imagem. O modelo base oferece suporte a mais de 400 rótulos diferentes.
Você pode obter a descrição de texto de cada rótulo, indexar entre todos os rótulos suportados pelo
do modelo e da pontuação de confiança da correspondência. Exemplo:
Swift
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
Objective-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
Dicas para melhorar o desempenho em tempo real
Se você quiser rotular imagens em um aplicativo em tempo real, siga estas instruções diretrizes para obter as melhores taxas de quadros:
- Para processar frames de vídeo, use a API síncrona
results(in:)
do rotulador de imagens. Ligação esse método daAVCaptureVideoDataOutputSampleBufferDelegate
captureOutput(_, didOutput:from:)
para receber resultados do vídeo fornecido de forma síncrona frame. Manter deAVCaptureVideoDataOutput
alwaysDiscardsLateVideoFrames
comotrue
para limitar chamadas ao rotulador de imagens. Se um novo quadro de vídeo ficar disponível enquanto o rotulador de imagens estiver em execução, ele será descartado. - Se você usar a saída do rotulador de imagens para sobrepor elementos gráficos a imagem de entrada, primeiro acesse o resultado do Kit de ML e, em seguida, renderize a imagem e sobreposição em uma única etapa. Ao fazer isso, você renderiza a superfície de exibição apenas uma vez para cada frame de entrada processado. Veja a classe updatePreviewOverlayViewWithLastFrame na amostra do guia de início rápido do Kit de ML.