Rotular imagens com um modelo personalizado no Android

É possível usar o Kit de ML para reconhecer entidades em uma imagem e rotulá-las. Essa API oferece suporte a uma ampla variedade de modelos de classificação de imagem personalizados. Não se esqueça consulte Modelos personalizados com o Kit de ML para receber orientações sobre requisitos de compatibilidade de modelos, onde encontrar modelos pré-treinados, e como treinar seus próprios modelos.

Há duas maneiras de integrar a rotulagem de imagens a modelos personalizados: o agrupamento do pipeline como parte do aplicativo ou usando um pipeline desagrupado que depende no Google Play Services. Se você selecionar o pipeline desagrupado, o app será menores. Veja mais detalhes na tabela abaixo.

AgrupadasDesagrupado
Nome da bibliotecacom.google.mlkit:image-labeling-customcom.google.android.gms:play-services-mlkit-image-labeling-custom
ImplementaçãoO pipeline é vinculado estaticamente ao app no tempo de build.O download do pipeline é feito dinamicamente pelo Google Play Services.
Tamanho do appAumento de cerca de 3,8 MB no tamanho.Cerca de 200 KB de aumento.
Tempo de inicializaçãoO pipeline está disponível imediatamente.Pode ser necessário aguardar o download do pipeline para usar o recurso pela primeira vez.
Estágio do ciclo de vida da APIDisponibilidade geral (GA)Beta

Há duas maneiras de integrar um modelo personalizado: agrupar o modelo por colocá-lo na pasta de recursos do app ou fazer o download dele dinamicamente do Firebase. A tabela a seguir compara essas duas opções.

Modelo em pacote Modelo hospedado
O modelo faz parte do APK do app, o que aumenta o tamanho dele. O modelo não faz parte do seu APK. Ele é hospedado por meio do upload para Machine Learning do Firebase.
O modelo estará disponível imediatamente, mesmo quando o dispositivo Android estiver off-line O download do modelo é feito sob demanda
Não é necessário ter um projeto do Firebase Requer um projeto do Firebase
É necessário republicar o app para atualizar o modelo Enviar atualizações do modelo sem republicar o app
Sem testes A/B integrados Teste A/B fácil com a Configuração remota do Firebase

Faça um teste

Antes de começar

  1. No arquivo build.gradle no nível do projeto, inclua Repositório Maven do Google em buildscript e allprojects.

  2. Adicione as dependências das bibliotecas do Android do Kit de ML ao arquivo arquivo do Gradle no nível do app, que geralmente é app/build.gradle. Escolha uma das opções as seguintes dependências com base nas suas necessidades:

    Para agrupar o pipeline com o aplicativo:

    dependencies {
      // ...
      // Use this dependency to bundle the pipeline with your app
      implementation 'com.google.mlkit:image-labeling-custom:17.0.3'
    }
    

    Para usar o pipeline no Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded pipeline in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5'
    }
    
  3. Se você quiser usar o pipeline no Google Play Services, será possível configure seu app para fazer o download automático do pipeline para o dispositivo depois seu app é instalado pela Play Store. Para fazer isso, adicione o seguinte declaração ao arquivo AndroidManifest.xml do app:

    <application ...>
        ...
        <meta-data
            android:name="com.google.mlkit.vision.DEPENDENCIES"
            android:value="custom_ica" />
        <!-- To use multiple downloads: android:value="custom_ica,download2,download3" -->
    </application>
    

    Também é possível verificar explicitamente a disponibilidade do pipeline e solicitar o download pelo API ModuleInstallClient do Google Play Services.

    Se você não ativar os downloads do pipeline no momento da instalação ou solicitar o download explícito, o download do pipeline é feito na primeira vez que você executa o rotulador. Solicitações feitas por você antes da conclusão do download não produzem resultados.

  4. Adicione a dependência linkFirebase se quiser fazer o download dinâmico de um do Firebase:

    Para fazer o download dinâmico de um modelo do Firebase, adicione o método linkFirebase dependência:

    dependencies {
      // ...
      // Image labeling feature with model downloaded from Firebase
      implementation 'com.google.mlkit:image-labeling-custom:17.0.3'
      // Or use the dynamically downloaded pipeline in Google Play Services
      // implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5'
      implementation 'com.google.mlkit:linkfirebase:17.0.0'
    }
    
  5. Se você quiser fazer o download de um modelo, verifique se adicione o Firebase ao seu projeto Android, caso ainda não tenha feito isso. Isso não é necessário quando você agrupa o modelo.

1. Carregar o modelo

Configurar uma fonte de modelo local

Para agrupar o modelo e o app, faça o seguinte:

  1. Copie o arquivo do modelo (geralmente terminando em .tflite ou .lite) para o arquivo assets/. Talvez seja necessário criar a pasta primeiro clicando com o botão direito do mouse na pasta app/ e, em seguida, Novo > Pasta > de recursos.)

  2. Em seguida, adicione o seguinte ao arquivo build.gradle do seu app para garantir que O Gradle não compacta o arquivo de modelo ao criar o app:

    android {
        // ...
        aaptOptions {
            noCompress "tflite"
            // or noCompress "lite"
        }
    }
    

    O arquivo do modelo será incluído no pacote do app e estará disponível para o Kit de ML como um ativo bruto.

  3. Crie o objeto LocalModel, especificando o caminho para o arquivo de modelo:

    Kotlin

    val localModel = LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build()

    Java

    LocalModel localModel =
        new LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build();

Configurar uma fonte de modelo hospedada no Firebase

Para usar o modelo hospedado remotamente, crie um objeto RemoteModel ao FirebaseModelSource, especificando o nome que você atribuiu ao modelo ao publicou:

Kotlin

// Specify the name you assigned in the Firebase console.
val remoteModel =
    CustomRemoteModel
        .Builder(FirebaseModelSource.Builder("your_model_name").build())
        .build()

Java

// Specify the name you assigned in the Firebase console.
CustomRemoteModel remoteModel =
    new CustomRemoteModel
        .Builder(new FirebaseModelSource.Builder("your_model_name").build())
        .build();

Em seguida, inicie a tarefa de download do modelo, especificando as condições sob as quais do qual você quer permitir o download. Se o modelo não estiver no dispositivo ou se um modelo mais recente versão do modelo estiver disponível, a tarefa fará o download do arquivo do Firebase:

Kotlin

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

Java

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(@NonNull Task task) {
                // Success.
            }
        });

Muitos apps iniciam a tarefa de download no código de inicialização, mas você pode fazer isso a qualquer momento antes de precisar usar o modelo.

Configurar o rotulador de imagens

Depois de configurar as origens do modelo, crie um objeto ImageLabeler com um deles.

As seguintes opções estão disponíveis:

Opções
confidenceThreshold

Pontuação de confiança mínima dos rótulos detectados. Se não for definido, qualquer um o limite do classificador especificado pelos metadados do modelo será usado. Se o modelo não tiver metadados ou se os metadados não tiverem especificar um limite de classificador, um limite padrão de 0,0 será usados.

maxResultCount

Número máximo de rótulos a serem retornados. Se não for definido, o valor padrão de 10 serão usados.

Se você tiver apenas um modelo agrupado localmente, basta criar um rotulador Objeto LocalModel:

Kotlin

val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0.5f)
    .setMaxResultCount(5)
    .build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)

Java

CustomImageLabelerOptions customImageLabelerOptions =
        new CustomImageLabelerOptions.Builder(localModel)
            .setConfidenceThreshold(0.5f)
            .setMaxResultCount(5)
            .build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);

Se você tiver um modelo hospedado remotamente, será necessário verificar se ele foi antes de executá-lo. É possível verificar o status do download do modelo tarefa usando o método isModelDownloaded() do gerenciador de modelos.

Embora isso só precise ser confirmado antes de executar o rotulador, se você mas tem um modelo hospedado remotamente e um modelo agrupado localmente, isso pode tornar sentido realizar essa verificação ao instanciar o rotulador de imagens: crie uma rotulador a partir do modelo remoto, caso ele tenha sido transferido por download, e a partir da de outro modelo.

Kotlin

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded ->
    val optionsBuilder =
        if (isDownloaded) {
            CustomImageLabelerOptions.Builder(remoteModel)
        } else {
            CustomImageLabelerOptions.Builder(localModel)
        }
    val options = optionsBuilder
                  .setConfidenceThreshold(0.5f)
                  .setMaxResultCount(5)
                  .build()
    val labeler = ImageLabeling.getClient(options)
}

Java

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                CustomImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
                }
                CustomImageLabelerOptions options = optionsBuilder
                    .setConfidenceThreshold(0.5f)
                    .setMaxResultCount(5)
                    .build();
                ImageLabeler labeler = ImageLabeling.getClient(options);
            }
        });

Se você tiver apenas um modelo hospedado remotamente, desative o recurso da interface (por exemplo, usar o recurso esmaecer ou ocultar parte da interface) até confirme se o download do modelo foi concluído. Para fazer isso, anexe um listener ao método download() do gerenciador de modelos:

Kotlin

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

Java

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

2. Preparar a imagem de entrada

Em seguida, para cada imagem que você quer rotular, crie um InputImage da imagem. O rotulador de imagens é executado mais rapidamente quando você usa um Bitmap. ou, se você usar a API camera2, um YUV_420_888 media.Image, que são quando possível.

Você pode criar um InputImage de diferentes origens, cada uma explicada abaixo.

Como usar um media.Image

Para criar um InputImage de um objeto media.Image, como quando você captura uma imagem de um da câmera do dispositivo, transmita o objeto media.Image e o rotação para InputImage.fromMediaImage().

Se você usar o método CameraX, os recursos OnImageCapturedListener e As classes ImageAnalysis.Analyzer calculam o valor de rotação para você.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se você não usar uma biblioteca de câmera que informe o grau de rotação da imagem, pode calculá-lo usando o grau de rotação do dispositivo e a orientação da câmera no dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Em seguida, transmita o objeto media.Image e o grau de rotação para InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Usar um URI de arquivo

Para criar um InputImage de um URI de arquivo, transmita o contexto do aplicativo e o URI do arquivo para InputImage.fromFilePath(). Isso é útil quando você usar uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione uma imagem do app Galeria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Como usar ByteBuffer ou ByteArray

Para criar um InputImage de uma ByteBuffer ou ByteArray, primeiro calcule a imagem grau de rotação conforme descrito anteriormente para a entrada media.Image. Depois, crie o objeto InputImage com o buffer ou a matriz, junto com o altura, largura, formato de codificação de cores e grau de rotação:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Como usar um Bitmap

Para criar um InputImage de um objeto Bitmap, faça a seguinte declaração:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

A imagem é representada por um objeto Bitmap com os graus de rotação.

3. Executar o rotulador de imagens

Para rotular objetos em uma imagem, transmita o objeto image para o objeto ImageLabeler. process().

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Receber informações sobre entidades rotuladas

Se a operação de rotulagem de imagem for bem-sucedida, uma lista de ImageLabel são transmitidos para o listener de êxito. Cada objeto ImageLabel representa algo que foi rotulado na imagem. É possível receber o texto de cada rótulo descrição (se disponível nos metadados do arquivo de modelo do TensorFlow Lite), pontuação de confiança e índice. Exemplo:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Dicas para melhorar o desempenho em tempo real

Se você quiser rotular imagens em um aplicativo em tempo real, siga estas instruções para atingir os melhores frame rates:

  • Se você usar o método Camera ou API camera2, de limitação para o rotulador de imagens. Se um novo vídeo fique disponível enquanto o rotulador de imagens está em execução, elimine o frame. Consulte a VisionProcessorBase no app de amostra do guia de início rápido para conferir um exemplo.
  • Se você usa a API CameraX, verificar se a estratégia de pressão de retorno está definida para o valor padrão ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Isso garante que apenas uma imagem será enviada para análise por vez. Se mais imagens forem produzidas quando o analisador estiver ocupado, elas serão descartadas automaticamente e não serão enfileiradas entrega. Depois que a imagem que está sendo analisada é fechada, chamando ImageProxy.close(), a próxima imagem mais recente será entregue.
  • Se você usar a saída do rotulador de imagens para sobrepor elementos gráficos a imagem de entrada, primeiro acesse o resultado do Kit de ML e, em seguida, renderize a imagem e sobreposição em uma única etapa. Isso é renderizado na superfície da tela. apenas uma vez para cada frame de entrada. Consulte a CameraSourcePreview e GraphicOverlay no app de amostra do guia de início rápido para conferir um exemplo.
  • Se você usar a API Camera2, capture imagens no ImageFormat.YUV_420_888. Se você usar a API Camera mais antiga, capture imagens no ImageFormat.NV21.