在 Android 上使用 ML Kit 為圖片加上標籤

您可以使用 ML Kit 為圖片中辨識到的物件加上標籤。ML Kit 提供的預設模型支援 400 多個不同的標籤。

功能未綁定組合
實作模型會透過 Google Play 服務動態下載。模型會在建構期間與您的應用程式靜態連結。
應用程式大小大小約增加 200 KB。大小約增加 5.7 MB。
初始化時間首次使用時,可能需要等待模型下載。模型可立即使用

立即試用

事前準備

  1. 在專案層級的 build.gradle 檔案中,請務必在 buildscriptallprojects 區段中納入 Google 的 Maven 存放區。

  2. 將 ML Kit Android 程式庫的依附元件新增至模組的應用程式層級 Gradle 檔案,通常為 app/build.gradle。請根據您的需求選擇下列其中一個依附元件:

    如要將模型與應用程式組合:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    如要在 Google Play 服務中使用模型:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. 如果您選擇使用 Google Play 服務中的模型,可以設定應用程式,在從 Play 商店安裝應用程式後,自動將模型下載到裝置。如要這麼做,請在應用程式的 AndroidManifest.xml 檔案中加入以下宣告:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    您也可以透過 Google Play 服務 ModuleInstallClient API,明確檢查模型的可用性,並要求下載。

    如果您未啟用安裝時的模型下載功能或要求明確下載,系統會在您首次執行標註工具時下載模型。在下載完成前提出的要求不會產生任何結果。

您現在可以開始為圖片加上標籤。

1. 準備輸入圖片

從圖片建立 InputImage 物件。使用 Bitmap 或 (如果使用 camera2 API 則為) YUV_420_888 media.Image 時,圖片標註器的執行速度最快,建議您盡量使用這兩種格式。

您可以從不同來源建立 InputImage 物件,下文將說明每個來源。

使用 media.Image

如要從 media.Image 物件建立 InputImage 物件 (例如從裝置相機拍攝圖片時),請將 media.Image 物件和圖片的旋轉方向傳遞至 InputImage.fromMediaImage()

如果您使用 CameraX 程式庫,OnImageCapturedListenerImageAnalysis.Analyzer 類別會為您計算旋轉值。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您未使用可提供圖片旋轉角度的相機程式庫,可以根據裝置的旋轉角度和裝置中相機感應器的方向來計算:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

接著,將 media.Image 物件和旋轉度數值傳遞至 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用檔案 URI

如要從檔案 URI 建立 InputImage 物件,請將應用程式內容和檔案 URI 傳遞至 InputImage.fromFilePath()。當您使用 ACTION_GET_CONTENT 意圖,提示使用者從相片庫應用程式中選取圖片時,這項功能就很實用。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如要從 ByteBufferByteArray 建立 InputImage 物件,請先計算圖片旋轉角度,如前文所述的 media.Image 輸入資料。接著,請使用緩衝區或陣列,搭配圖片的高度、寬度、顏色編碼格式和旋轉角度,建立 InputImage 物件:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如要從 Bitmap 物件建立 InputImage 物件,請進行下列宣告:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

圖片由 Bitmap 物件和旋轉度數代表。

2. 設定及執行圖片標註工具

如要為圖片中的物件加上標籤,請將 InputImage 物件傳遞至 ImageLabelerprocess 方法。

  1. 首先,請取得 ImageLabeler 的例項。

    如要使用裝置端圖片標註工具,請進行以下宣告:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. 然後將圖片傳遞至 process() 方法:

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. 取得標記物件的相關資訊

如果圖片標示作業成功,系統會將 ImageLabel 物件的清單傳遞至成功事件監聽器。每個 ImageLabel 物件都代表圖片中已標示的項目。基礎模型支援 400 多個不同的標籤。您可以取得每個標籤的文字說明、模型支援的所有標籤中的索引,以及比對的可信度分數。例如:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

改善即時成效的訣竅

如要在即時應用程式中標示圖片,請遵循下列指南,以獲得最佳的幀率:

  • 如果您使用 Cameracamera2 API,請限制對圖片標註工具的呼叫。如果在圖片標註工具執行期間出現新的影片影格,請放棄該影格。如需範例,請參閱快速入門範例應用程式中的 VisionProcessorBase 類別。
  • 如果您使用 CameraX API,請務必將回壓策略設為預設值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。這樣就能確保每次只會提交一張圖片進行分析。如果在分析器忙碌時產生更多圖片,系統會自動捨棄這些圖片,不會將圖片排入佇列以便傳送。呼叫 ImageProxy.close() 關閉要分析的圖片後,系統會傳送下一個最新的圖片。
  • 如果您使用圖片標註器的輸出內容,在輸入圖片上重疊圖形,請先從 ML Kit 取得結果,然後在單一步驟中算繪圖片和重疊圖形。這項作業只會針對每個輸入影格繪製一次至顯示介面。如需範例,請參閱快速入門範例應用程式中的 CameraSourcePreview GraphicOverlay 類別。
  • 如果您使用 Camera2 API,請以 ImageFormat.YUV_420_888 格式擷取圖片。如果您使用舊版 Camera API,請以 ImageFormat.NV21 格式擷取圖片。