הוספת תוויות לתמונות באמצעות ערכת ML ב-Android

אתם יכולים להשתמש ב-ML Kit כדי להוסיף תוויות לאובייקטים שזוהו בתמונה. מודל ברירת המחדל שסופק עם ערכת ML Kit תומכת ביותר מ-400 תוויות שונות.

תכונהלא חלק מהחבילהבחבילה
הטמעההורדת המודל מתבצעת באופן דינמי דרך Google Play Services.המודל מקושר באופן סטטי בזמן ה-build.
גודל האפליקציההגדלה של כ-200KB.הגדלה של כ-5.7MB.
זמן האתחוליכול להיות שתצטרכו להמתין להורדת המודל לפני השימוש הראשון.הדגם זמין באופן מיידי

רוצה לנסות?

לפני שמתחילים

  1. בקובץ build.gradle ברמת הפרויקט, חשוב לכלול את במאגר Maven בקטע buildscript וגם בקטע allprojects.

  2. הוספת יחסי התלות של ספריות ML Kit Android למודול של המודול ברמת האפליקציה, שהוא בדרך כלל app/build.gradle. יש לבחור אחד מ- בהתאם לצרכים שלכם:

    כדי לקבץ את המודל עם האפליקציה:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    כדי להשתמש במודל ב-Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. אם בוחרים להשתמש במודל ב-Google Play Services, אפשר להגדיר האפליקציה תוריד את המודל באופן אוטומטי למכשיר אחרי שהאפליקציה מותקנת מחנות Play. כדי לעשות את זה, צריך להוסיף את ההצהרה הבאה אל קובץ AndroidManifest.xml של האפליקציה:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    אפשר גם לבדוק באופן מפורש את זמינות המודל ולבקש הורדה דרך API של ModuleInstallClient ב-Google Play Services.

    אם לא תפעילו הורדות של מודלים בזמן ההתקנה או תבקשו הורדה מפורשת, הורדת המודל מתבצעת בפעם הראשונה שתפעילו את המתייג. הבקשות שלכם לפני שההורדה הסתיימה, לא נמצאו תוצאות.

עכשיו אפשר להוסיף תוויות לתמונות.

1. הכנת תמונת הקלט

יוצרים אובייקט InputImage מהתמונה. מתייג התמונות פועל הכי מהר כשמשתמשים ב-Bitmap או אם משתמשים Camera2 API, YUV_420_888 media.Image, שמומלץ כאשר ככל האפשר.

אפשר ליצור InputImage ממקורות שונים, מוסבר על כל אחד מהם בהמשך.

באמצעות media.Image

כדי ליצור InputImage מאובייקט media.Image, למשל כשמצלמים תמונה המצלמה של המכשיר, מעבירים את האובייקט media.Image ואת ל-InputImage.fromMediaImage().

אם משתמשים ספריית CameraX, OnImageCapturedListener ImageAnalysis.Analyzer מחלקות מחשבים את ערך הסבב עבורך.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

אם לא משתמשים בספריית מצלמה שמאפשרת לקבוע את כיוון הסיבוב של התמונה, הוא יכול לחשב אותו על סמך זווית הסיבוב של המכשיר וכיוון המצלמה החיישן במכשיר:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

לאחר מכן, מעבירים את האובייקט media.Image הערך של מעלה הסיבוב ל-InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

שימוש ב-URI של קובץ

כדי ליצור InputImage מ-URI של קובץ, מעבירים את ההקשר של האפליקציה ואת ה-URI של הקובץ InputImage.fromFilePath() זה שימושי כאשר צריך להשתמש ב-Intent ACTION_GET_CONTENT כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

שימוש ב-ByteBuffer או ב-ByteArray

כדי ליצור InputImage מ-ByteBuffer או מ-ByteArray, קודם צריך לחשב את התמונה מעלות סיבוב כפי שתואר קודם לכן עבור קלט media.Image. אחר כך יוצרים את האובייקט InputImage עם מאגר נתונים זמני או מערך, יחד עם גובה, רוחב, פורמט קידוד צבעים ומידת סיבוב:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

באמצעות Bitmap

כדי ליצור InputImage מאובייקט Bitmap, צריך ליצור את ההצהרה הבאה:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

התמונה מיוצגת על ידי אובייקט Bitmap ביחד עם מעלות סיבוב.

2. הגדרה והפעלה של מתייג התמונות

כדי להוסיף תוויות לאובייקטים בתמונה, צריך להעביר את האובייקט InputImage אל השיטה process של ImageLabeler.

  1. קודם כל, נקבל מופע של ImageLabeler

    אם רוצים להשתמש במתייג התמונות שבמכשיר, צריך לבצע את הפעולות הבאות הצהרה:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. לאחר מכן, מעבירים את התמונה ל-method process():

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. אחזור מידע על אובייקטים מתויגים

אם הפעולה של הוספת תווית לתמונות מצליחה, רשימה של אובייקטים מסוג ImageLabel מועברים למאזינים להצלחה. כל אחד אובייקט ImageLabel מייצג משהו שתויג בתמונה. הבסיס תומך ב-יותר מ-400 תוויות שונות. אפשר לקבל את תיאור הטקסט של כל תווית, אינדקס בין כל התוויות הנתמכות על ידי את המודל ואת רמת הסמך של ההתאמה. לדוגמה:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

טיפים לשיפור הביצועים בזמן אמת

כדי להוסיף תווית לתמונות באפליקציה בזמן אמת, צריך לפעול לפי השלבים הבאים כדי להשיג את קצבי הפריימים הטובים ביותר:

  • אם משתמשים Camera או camera2 API, ויסות קריאות למתייג התמונות. אם מדובר בסרטון חדש הופכת לזמינה בזמן שמתייג התמונות פועל, צריך לשחרר את המסגרת. לצפייה VisionProcessorBase באפליקציה לדוגמה של המדריך למתחילים.
  • אם אתם משתמשים ב-API של CameraX, יש לוודא שאסטרטגיית הלחץ החוזר מוגדרת לערך ברירת המחדל שלה ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST כך אפשר להבטיח שרק תמונה אחת תוצג לניתוח בכל פעם. אם עוד תמונות שנוצרות כשהכלי לניתוח נתונים עמוס, הוא יוסר באופן אוטומטי ולא ימתין בתור משלוח. לאחר שהתמונה שמנתחת נסגרת על ידי קריאה ImageProxy.close(), התמונה האחרונה הבאה תישלח.
  • אם משתמשים בפלט של מתייג התמונות כדי להציג גרפיקה בשכבת-על מקבלים קודם את התוצאה מ-ML Kit ואז מעבדים את התמונה וליצור שכבת-על בשלב אחד. הוא מוצג לפני השטח של המסך פעם אחת בלבד לכל מסגרת קלט. לצפייה CameraSourcePreview וגם GraphicOverlay, באפליקציה לדוגמה של המדריך למתחילים.
  • אם משתמשים ב- Camera2 API, מצלמים תמונות ב פורמט של ImageFormat.YUV_420_888. אם משתמשים בגרסה הישנה של ה-API של המצלמה, מצלמים תמונות ב פורמט של ImageFormat.NV21.