你可以使用 ML Kit 偵測自拍圖像或影片中的人臉。
臉部網格偵測 API | |
---|---|
SDK 名稱 | face-mesh-detection |
導入作業 | 在建構期間,程式碼和資產會以靜態方式連結至您的應用程式。 |
應用程式大小影響 | 約 6.4 MB |
成效 | 支援大多數裝置的即時功能。 |
立即試用
- 使用範例應用程式試試 請查看此 API 的使用範例。
事前準備
在專案層級的
build.gradle
檔案中,請務必加入 Google 的 您的 buildscript 與所有專案區段內的 Maven 存放區。將 ML Kit 臉部網格偵測程式庫的依附元件新增至 模組的應用程式層級 Gradle 檔案,通常為
app/build.gradle
:dependencies { // ... implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1' }
輸入圖片規範
應在距離裝置相機約 2 公尺 (7 英尺) 內拍攝圖片,因此 才能達到最佳的臉孔網格辨識技術。於 整體來說,臉孔越大,臉部網格的辨識成效越佳。
臉部應面向相機鏡頭,且至少有一半的臉孔清楚可見。 臉部和相機之間的任何大物體都可能造成 準確度。
如要在即時應用程式中偵測臉孔,您也應該 考量輸入圖片的整體尺寸較小的圖片 因此處理速度較快,因此擷取解析度較低的圖片可縮短延遲時間。 但請留意上述準確率規定,並確保 拍攝主體的臉孔會盡量佔滿圖片。
設定臉部網格偵測工具
如要變更任何臉部網格偵測工具的預設設定,請指定 比如說 FaceMeshDetectorOptions 物件。您可以變更下列設定:
setUseCase
BOUNDING_BOX_ONLY
:只為偵測到的臉孔網格提供定界框。 這是速度最快的臉部偵測器,但具有範圍限制(臉孔) 與相機之間的距離必須在約 2 公尺或 7 英尺以內)。FACE_MESH
(預設選項):提供定界框和額外臉孔 網狀資訊 (468 個 3D 點和三角形資訊)。相較於 為BOUNDING_BOX_ONLY
用途,延遲時間增加約 15%,評估依據為 Pixel 3。
例如:
Kotlin
val defaultDetector = FaceMeshDetection.getClient( FaceMeshDetectorOptions.DEFAULT_OPTIONS) val boundingBoxDetector = FaceMeshDetection.getClient( FaceMeshDetectorOptions.Builder() .setUseCase(UseCase.BOUNDING_BOX_ONLY) .build() )
Java
FaceMeshDetector defaultDetector = FaceMeshDetection.getClient( FaceMeshDetectorOptions.DEFAULT_OPTIONS); FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient( new FaceMeshDetectorOptions.Builder() .setUseCase(UseCase.BOUNDING_BOX_ONLY) .build() );
準備輸入圖片
如要偵測圖片中的臉孔,請透過以下任一種方式建立 InputImage
物件:
Bitmap
、media.Image
、ByteBuffer
、位元組陣列或裝置上的檔案。
接著,將 InputImage
物件傳遞至 FaceDetector
的 process
方法。
如要使用臉部網格偵測功能,圖片尺寸應至少為 480x360 像素。如果正在即時偵測臉孔,請擷取畫面 達到這個最低解析度將有助於縮短延遲時間
您可以建立InputImage
不同來源的 ANR 物件,說明如下。
使用 media.Image
如要建立InputImage
物件,例如從 media.Image
物件擷取圖片
裝置的相機,請傳遞 media.Image
物件和映像檔的
旋轉為 InputImage.fromMediaImage()
。
如果您使用
CameraX 程式庫、OnImageCapturedListener
和
ImageAnalysis.Analyzer
類別會計算旋轉值
不必確保憑證管理是否適當
因為 Google Cloud 會為您管理安全性
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
如果您沒有使用相機程式庫提供圖片的旋轉角度, 可根據裝置的旋轉角度和相機方向來計算 感應器:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
然後,請傳遞 media.Image
物件和
將度數值旋轉為 InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
使用檔案 URI
如要建立InputImage
物件,將應用程式結構定義與檔案 URI 傳遞至
InputImage.fromFilePath()
。如果您要
使用 ACTION_GET_CONTENT
意圖提示使用者選取
取自圖片庫應用程式中的圖片。
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
使用 ByteBuffer
或 ByteArray
如要建立InputImage
ByteBuffer
或 ByteArray
的物件,請先計算圖片
與先前 media.Image
輸入中所述的旋轉角度相同。
接著,使用緩衝區或陣列建立 InputImage
物件,以及
高度、寬度、顏色編碼格式以及旋轉角度:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
使用 Bitmap
如要建立InputImage
物件中,Bitmap
物件,請做出以下宣告:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
圖像以 Bitmap
物件和旋轉角度表示。
處理圖片
將圖片傳遞至 process
方法:
Kotlin
val result = detector.process(image) .addOnSuccessListener { result -> // Task completed successfully // … } .addOnFailureListener { e -> // Task failed with an exception // … }
Java
Task<List<FaceMesh>> result = detector.process(image) .addOnSuccessListener( new OnSuccessListener<List<FaceMesh>>() { @Override public void onSuccess(List<FaceMesh> result) { // Task completed successfully // … } }) .addOnFailureListener( new OnFailureListener() { @Override Public void onFailure(Exception e) { // Task failed with an exception // … } });
取得偵測到的臉部網格相關資訊
如果在圖片中偵測到任何臉孔,系統會將 FaceMesh
物件清單傳遞至
成功事件監聽器每個 FaceMesh
都代表系統在
圖片。您可以在輸入中取得每個臉部網格的邊界座標
以及您設定臉部網格的其他資訊
偵測工具。
Kotlin
for (faceMesh in faceMeshs) { val bounds: Rect = faceMesh.boundingBox() // Gets all points val faceMeshpoints = faceMesh.allPoints for (faceMeshpoint in faceMeshpoints) { val index: Int = faceMeshpoints.index() val position = faceMeshpoint.position } // Gets triangle info val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles for (triangle in triangles) { // 3 Points connecting to each other and representing a triangle area. val connectedPoints = triangle.allPoints() } }
Java
for (FaceMesh faceMesh : faceMeshs) { Rect bounds = faceMesh.getBoundingBox(); // Gets all points List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints(); for (FaceMeshPoint faceMeshpoint : faceMeshpoints) { int index = faceMeshpoints.getIndex(); PointF3D position = faceMeshpoint.getPosition(); } // Gets triangle info List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles(); for (Triangle<FaceMeshPoint> triangle : triangles) { // 3 Points connecting to each other and representing a triangle area. List<FaceMeshPoint> connectedPoints = triangle.getAllPoints(); } }