Reconocimiento de tinta digital con ML Kit en iOS

Con el reconocimiento de tinta digital del Kit de AA, puedes reconocer texto escrito a mano en una superficie digital en cientos de idiomas y clasificar bocetos.

Probar

Antes de comenzar

  1. Incluye las siguientes bibliotecas del ML Kit en tu Podfile:

    pod 'GoogleMLKit/DigitalInkRecognition', '3.2.0'
    
    
  2. Después de instalar o actualizar los Pods de tu proyecto, abre el proyecto de Xcode con su .xcworkspace. El Kit de AA es compatible con Xcode 13.2.1 o versiones posteriores.

Ya estás listo para comenzar a reconocer texto en objetos Ink.

Compila un objeto Ink

La forma principal de compilar un objeto Ink es dibujarlo en una pantalla táctil. En iOS, puedes usar una UIImageView junto con controladores de eventos táctiles que dibujan los trazos en la pantalla y también almacenan los puntos de los trazos para compilar el objeto Ink. Este patrón general se demuestra en el siguiente fragmento de código. Consulta la app de inicio rápido para obtener un ejemplo más completo, que separa el manejo de eventos táctiles, el dibujo de la pantalla y la administración de datos de trazos.

Swift

@IBOutlet weak var mainImageView: UIImageView!
var kMillisecondsPerTimeInterval = 1000.0
var lastPoint = CGPoint.zero
private var strokes: [Stroke] = []
private var points: [StrokePoint] = []

func drawLine(from fromPoint: CGPoint, to toPoint: CGPoint) {
  UIGraphicsBeginImageContext(view.frame.size)
  guard let context = UIGraphicsGetCurrentContext() else {
    return
  }
  mainImageView.image?.draw(in: view.bounds)
  context.move(to: fromPoint)
  context.addLine(to: toPoint)
  context.setLineCap(.round)
  context.setBlendMode(.normal)
  context.setLineWidth(10.0)
  context.setStrokeColor(UIColor.white.cgColor)
  context.strokePath()
  mainImageView.image = UIGraphicsGetImageFromCurrentImageContext()
  mainImageView.alpha = 1.0
  UIGraphicsEndImageContext()
}

override func touchesBegan(_ touches: Set, with event: UIEvent?) {
  guard let touch = touches.first else {
    return
  }
  lastPoint = touch.location(in: mainImageView)
  let t = touch.timestamp
  points = [StrokePoint.init(x: Float(lastPoint.x),
                             y: Float(lastPoint.y),
                             t: Int(t * kMillisecondsPerTimeInterval))]
  drawLine(from:lastPoint, to:lastPoint)
}

override func touchesMoved(_ touches: Set, with event: UIEvent?) {
  guard let touch = touches.first else {
    return
  }
  let currentPoint = touch.location(in: mainImageView)
  let t = touch.timestamp
  points.append(StrokePoint.init(x: Float(currentPoint.x),
                                 y: Float(currentPoint.y),
                                 t: Int(t * kMillisecondsPerTimeInterval)))
  drawLine(from: lastPoint, to: currentPoint)
  lastPoint = currentPoint
}

override func touchesEnded(_ touches: Set, with event: UIEvent?) {
  guard let touch = touches.first else {
    return
  }
  let currentPoint = touch.location(in: mainImageView)
  let t = touch.timestamp
  points.append(StrokePoint.init(x: Float(currentPoint.x),
                                 y: Float(currentPoint.y),
                                 t: Int(t * kMillisecondsPerTimeInterval)))
  drawLine(from: lastPoint, to: currentPoint)
  lastPoint = currentPoint
  strokes.append(Stroke.init(points: points))
  self.points = []
  doRecognition()
}

Objective‑C

// Interface
@property (weak, nonatomic) IBOutlet UIImageView *mainImageView;
@property(nonatomic) CGPoint lastPoint;
@property(nonatomic) NSMutableArray *strokes;
@property(nonatomic) NSMutableArray *points;

// Implementations
static const double kMillisecondsPerTimeInterval = 1000.0;

- (void)drawLineFrom:(CGPoint)fromPoint to:(CGPoint)toPoint {
  UIGraphicsBeginImageContext(self.mainImageView.frame.size);
  [self.mainImageView.image drawInRect:CGRectMake(0, 0, self.mainImageView.frame.size.width,
                                                  self.mainImageView.frame.size.height)];
  CGContextMoveToPoint(UIGraphicsGetCurrentContext(), fromPoint.x, fromPoint.y);
  CGContextAddLineToPoint(UIGraphicsGetCurrentContext(), toPoint.x, toPoint.y);
  CGContextSetLineCap(UIGraphicsGetCurrentContext(), kCGLineCapRound);
  CGContextSetLineWidth(UIGraphicsGetCurrentContext(), 10.0);
  CGContextSetRGBStrokeColor(UIGraphicsGetCurrentContext(), 1, 1, 1, 1);
  CGContextSetBlendMode(UIGraphicsGetCurrentContext(), kCGBlendModeNormal);
  CGContextStrokePath(UIGraphicsGetCurrentContext());
  CGContextFlush(UIGraphicsGetCurrentContext());
  self.mainImageView.image = UIGraphicsGetImageFromCurrentImageContext();
  UIGraphicsEndImageContext();
}

- (void)touchesBegan:(NSSet *)touches withEvent:(nullable UIEvent *)event {
  UITouch *touch = [touches anyObject];
  self.lastPoint = [touch locationInView:self.mainImageView];
  NSTimeInterval time = [touch timestamp];
  self.points = [NSMutableArray array];
  [self.points addObject:[[MLKStrokePoint alloc] initWithX:self.lastPoint.x
                                                         y:self.lastPoint.y
                                                         t:time * kMillisecondsPerTimeInterval]];
  [self drawLineFrom:self.lastPoint to:self.lastPoint];
}

- (void)touchesMoved:(NSSet *)touches withEvent:(nullable UIEvent *)event {
  UITouch *touch = [touches anyObject];
  CGPoint currentPoint = [touch locationInView:self.mainImageView];
  NSTimeInterval time = [touch timestamp];
  [self.points addObject:[[MLKStrokePoint alloc] initWithX:currentPoint.x
                                                         y:currentPoint.y
                                                         t:time * kMillisecondsPerTimeInterval]];
  [self drawLineFrom:self.lastPoint to:currentPoint];
  self.lastPoint = currentPoint;
}

- (void)touchesEnded:(NSSet *)touches withEvent:(nullable UIEvent *)event {
  UITouch *touch = [touches anyObject];
  CGPoint currentPoint = [touch locationInView:self.mainImageView];
  NSTimeInterval time = [touch timestamp];
  [self.points addObject:[[MLKStrokePoint alloc] initWithX:currentPoint.x
                                                         y:currentPoint.y
                                                         t:time * kMillisecondsPerTimeInterval]];
  [self drawLineFrom:self.lastPoint to:currentPoint];
  self.lastPoint = currentPoint;
  if (self.strokes == nil) {
    self.strokes = [NSMutableArray array];
  }
  [self.strokes addObject:[[MLKStroke alloc] initWithPoints:self.points]];
  self.points = nil;
  [self doRecognition];
}

Ten en cuenta que el fragmento de código incluye una función de muestra a fin de dibujar el trazo en UIImageView, que debe adaptarse según sea necesario para tu aplicación. Al dibujar los segmentos de línea, se recomienda usar letras redondas para que los segmentos de longitud cero se dibujen como un punto (piense en el punto en una letra minúscula i). Se llama a la función doRecognition() después de escribir cada trazo y se definirá a continuación.

Obtén una instancia de DigitalInkRecognizer

Para realizar el reconocimiento, debemos pasar el objeto Ink a una instancia de DigitalInkRecognizer. A fin de obtener la instancia DigitalInkRecognizer, primero debemos descargar el modelo de reconocimiento para el lenguaje deseado y cargar el modelo en la RAM. Esto se puede lograr con el siguiente fragmento de código, que para mayor simplicidad, se coloca en el método viewDidLoad() y usa un nombre de idioma codificado. Consulta la app de inicio rápido para ver un ejemplo de cómo mostrarle al usuario la lista de idiomas disponibles y descargar el seleccionado.

Swift

override func viewDidLoad() {
  super.viewDidLoad()
  let languageTag = "en-US"
  let identifier = DigitalInkRecognitionModelIdentifier(forLanguageTag: languageTag)
  if identifier == nil {
    // no model was found or the language tag couldn't be parsed, handle error.
  }
  let model = DigitalInkRecognitionModel.init(modelIdentifier: identifier!)
  let modelManager = ModelManager.modelManager()
  let conditions = ModelDownloadConditions.init(allowsCellularAccess: true,
                                         allowsBackgroundDownloading: true)
  modelManager.download(model, conditions: conditions)
  // Get a recognizer for the language
  let options: DigitalInkRecognizerOptions = DigitalInkRecognizerOptions.init(model: model)
  recognizer = DigitalInkRecognizer.digitalInkRecognizer(options: options)
}

Objective‑C

- (void)viewDidLoad {
  [super viewDidLoad];
  NSString *languagetag = @"en-US";
  MLKDigitalInkRecognitionModelIdentifier *identifier =
      [MLKDigitalInkRecognitionModelIdentifier modelIdentifierForLanguageTag:languagetag];
  if (identifier == nil) {
    // no model was found or the language tag couldn't be parsed, handle error.
  }
  MLKDigitalInkRecognitionModel *model = [[MLKDigitalInkRecognitionModel alloc]
                                          initWithModelIdentifier:identifier];
  MLKModelManager *modelManager = [MLKModelManager modelManager];
  [modelManager downloadModel:model conditions:[[MLKModelDownloadConditions alloc]
                                                initWithAllowsCellularAccess:YES
                                                allowsBackgroundDownloading:YES]];
  MLKDigitalInkRecognizerOptions *options =
      [[MLKDigitalInkRecognizerOptions alloc] initWithModel:model];
  self.recognizer = [MLKDigitalInkRecognizer digitalInkRecognizerWithOptions:options];
}

Las apps de inicio rápido incluyen código adicional que muestra cómo controlar varias descargas al mismo tiempo y determinar qué descarga se realizó correctamente mediante el manejo de las notificaciones de finalización.

Reconoce un objeto Ink

Luego, llegamos a la función doRecognition(), que, para simplificar, se llama desde touchesEnded(). En otras aplicaciones, es posible que desees invocar el reconocimiento solo después de un tiempo de espera o cuando el usuario presionó un botón para activar el reconocimiento.

Swift

func doRecognition() {
  let ink = Ink.init(strokes: strokes)
  recognizer.recognize(
    ink: ink,
    completion: {
      [unowned self]
      (result: DigitalInkRecognitionResult?, error: Error?) in
      var alertTitle = ""
      var alertText = ""
      if let result = result, let candidate = result.candidates.first {
        alertTitle = "I recognized this:"
        alertText = candidate.text
      } else {
        alertTitle = "I hit an error:"
        alertText = error!.localizedDescription
      }
      let alert = UIAlertController(title: alertTitle,
                                  message: alertText,
                           preferredStyle: UIAlertController.Style.alert)
      alert.addAction(UIAlertAction(title: "OK",
                                    style: UIAlertAction.Style.default,
                                  handler: nil))
      self.present(alert, animated: true, completion: nil)
    }
  )
}

Objective‑C

- (void)doRecognition {
  MLKInk *ink = [[MLKInk alloc] initWithStrokes:self.strokes];
  __weak typeof(self) weakSelf = self;
  [self.recognizer
      recognizeInk:ink
        completion:^(MLKDigitalInkRecognitionResult *_Nullable result,
                     NSError *_Nullable error) {
    typeof(weakSelf) strongSelf = weakSelf;
    if (strongSelf == nil) {
      return;
    }
    NSString *alertTitle = nil;
    NSString *alertText = nil;
    if (result.candidates.count > 0) {
      alertTitle = @"I recognized this:";
      alertText = result.candidates[0].text;
    } else {
      alertTitle = @"I hit an error:";
      alertText = [error localizedDescription];
    }
    UIAlertController *alert =
        [UIAlertController alertControllerWithTitle:alertTitle
                                            message:alertText
                                     preferredStyle:UIAlertControllerStyleAlert];
    [alert addAction:[UIAlertAction actionWithTitle:@"OK"
                                              style:UIAlertActionStyleDefault
                                            handler:nil]];
    [strongSelf presentViewController:alert animated:YES completion:nil];
  }];
}

Administra las descargas de modelos

Ya hemos visto cómo descargar un modelo de reconocimiento. En los siguientes fragmentos de código, se muestra cómo comprobar si ya se descargó un modelo o cómo borrar un modelo cuando ya no es necesario para recuperar el espacio de almacenamiento.

Verifica si ya se descargó un modelo

Swift

let model : DigitalInkRecognitionModel = ...
let modelManager = ModelManager.modelManager()
modelManager.isModelDownloaded(model)

Objective‑C

MLKDigitalInkRecognitionModel *model = ...;
MLKModelManager *modelManager = [MLKModelManager modelManager];
[modelManager isModelDownloaded:model];

Borra un modelo descargado

Swift

let model : DigitalInkRecognitionModel = ...
let modelManager = ModelManager.modelManager()

if modelManager.isModelDownloaded(model) {
  modelManager.deleteDownloadedModel(
    model!,
    completion: {
      error in
      if error != nil {
        // Handle error
        return
      }
      NSLog(@"Model deleted.");
    })
}

Objective‑C

MLKDigitalInkRecognitionModel *model = ...;
MLKModelManager *modelManager = [MLKModelManager modelManager];

if ([self.modelManager isModelDownloaded:model]) {
  [self.modelManager deleteDownloadedModel:model
                                completion:^(NSError *_Nullable error) {
                                  if (error) {
                                    // Handle error.
                                    return;
                                  }
                                  NSLog(@"Model deleted.");
                                }];
}

Sugerencias para mejorar la precisión del reconocimiento de texto

La precisión del reconocimiento de texto puede variar en diferentes idiomas. La precisión también depende del estilo de escritura. Si bien el reconocimiento de tinta digital está entrenado para manejar muchos tipos de estilos de escritura, los resultados pueden variar de un usuario a otro.

Estas son algunas formas de mejorar la precisión de un reconocedor de texto. Ten en cuenta que estas técnicas no se aplican a los clasificadores de dibujo para emojis, dibujos automáticos y formas.

Área de escritura

Muchas aplicaciones tienen un área de escritura bien definida para la entrada del usuario. El significado de un símbolo se determina de forma parcial por su tamaño en relación con el tamaño del área de escritura que lo contiene. Por ejemplo, la diferencia entre una letra minúscula “o” o “c” y una coma frente a una barra diagonal.

Indicar al reconocedor el ancho y la altura del área de escritura puede mejorar la precisión. Sin embargo, el reconocedor supone que el área de escritura solo contiene una sola línea de texto. Si el área de escritura física es lo suficientemente grande para permitir que el usuario escriba dos o más líneas, puedes obtener mejores resultados pasando una WriteArea con una altura que sea la mejor estimación de la altura de una sola línea de texto. El objeto WriteArea que pasas al reconocedor no tiene que corresponder exactamente con el área de escritura física en la pantalla. Cambiar la altura WriteArea de esta manera funciona mejor en algunos idiomas que en otros.

Cuando especifiques el área de escritura, especifica el ancho y la altura en las mismas unidades que las coordenadas de trazo. Los argumentos de las coordenadas x,y no tienen un requisito de unidades: la API normaliza todas las unidades, por lo que lo único importante es el tamaño y la posición relativos de los trazos. Puedes pasar las coordenadas en la escala que desees para tu sistema.

Antes del contexto

El contexto previo es el texto que precede inmediatamente a los trazos del Ink que intentas reconocer. Para ayudar al reconocedor, puedes indicarle el contexto previo.

Por ejemplo, las letras cursivas "n" y "u" suelen confundirse entre sí. Si el usuario ya ingresó la palabra parcial "arg", puede continuar con trazos que se puedan reconocer como "ument" o "nment". Especificar el "arg" previo al contexto resuelve la ambigüedad, ya que la palabra "argumento" es más probable que "argnmento".

El contexto previo también puede ayudar al reconocedor a identificar saltos de palabra, los espacios entre palabras. Puedes escribir un carácter de espacio, pero no puedes dibujar uno. ¿Cómo puede un reconocedor determinar cuándo termina una palabra y comienza la siguiente? Si el usuario ya escribió "hello" y continúa con la palabra escrita "world", sin el contexto previo, el reconocedor mostrará la string "world". Sin embargo, si especificas el “precontexto “hello”, el modelo mostrará la string “world” con un espacio inicial, ya que “hello world” tiene más sentido que “helloword”.

Debes proporcionar la string previa al contexto más larga posible, con hasta 20 caracteres, incluidos los espacios. Si la string es más larga, el reconocedor solo usará los últimos 20 caracteres.

En la siguiente muestra de código, se indica cómo definir un área de escritura y usar un objeto RecognitionContext a fin de especificar el contexto previo.

Swift

let ink: Ink = ...;
let recognizer: DigitalInkRecognizer =  ...;
let preContext: String = ...;
let writingArea = WritingArea.init(width: ..., height: ...);

let context: DigitalInkRecognitionContext.init(
    preContext: preContext,
    writingArea: writingArea);

recognizer.recognizeHandwriting(
  from: ink,
  context: context,
  completion: {
    (result: DigitalInkRecognitionResult?, error: Error?) in
    if let result = result, let candidate = result.candidates.first {
      NSLog("Recognized \(candidate.text)")
    } else {
      NSLog("Recognition error \(error)")
    }
  })

Objective‑C

MLKInk *ink = ...;
MLKDigitalInkRecognizer *recognizer = ...;
NSString *preContext = ...;
MLKWritingArea *writingArea = [MLKWritingArea initWithWidth:...
                                              height:...];

MLKDigitalInkRecognitionContext *context = [MLKDigitalInkRecognitionContext
       initWithPreContext:preContext
       writingArea:writingArea];

[recognizer recognizeHandwritingFromInk:ink
            context:context
            completion:^(MLKDigitalInkRecognitionResult
                         *_Nullable result, NSError *_Nullable error) {
                               NSLog(@"Recognition result %@",
                                     result.candidates[0].text);
                         }];

Orden de trazos

La precisión del reconocimiento es sensible al orden de los trazos. Los reconocedores esperan que los trazos ocurran en el orden que las personas escribirían naturalmente; por ejemplo, de izquierda a derecha para el inglés. Cualquier caso que se aleja de este patrón, como escribir una oración en inglés que comienza con la última palabra, genera resultados menos precisos.

Otro ejemplo es cuando se quita una palabra en el medio de una Ink y se reemplaza por otra. Es probable que la revisión esté en medio de una oración, pero los trazos de la revisión se encuentran al final de la secuencia de trazo. En este caso, recomendamos enviar la palabra recién escrita por separado a la API y combinar el resultado con los reconocimientos anteriores mediante tu propia lógica.

Maneja formas ambiguas

Hay casos en los que el significado de la forma que se proporciona al reconocedor es ambiguo. Por ejemplo, un rectángulo con bordes muy redondeados podría verse como un rectángulo o una elipse.

Estos casos poco claros se pueden manejar mediante las puntuaciones de reconocimiento cuando están disponibles. Solo los clasificadores de formas proporcionan puntuaciones. Si el modelo está muy seguro, la puntuación del resultado principal será mucho mejor que la segunda. Si no hay certeza, las puntuaciones de los dos resultados principales serán similares. Además, ten en cuenta que los clasificadores de formas interpretan todo el Ink como una sola forma. Por ejemplo, si la Ink contiene un rectángulo y una elipses una junto a la otra, el reconocedor puede mostrar una o la otra (o una cosa completamente diferente) como resultado, ya que un solo candidato de reconocimiento no puede representar dos formas.