Escanea códigos de barras con el Kit de AA en Android

Organiza tus páginas con colecciones Guarda y categoriza el contenido según tus preferencias.

Puedes usar el Kit de AA para reconocer y decodificar códigos de barras.

Hay dos formas de integrar el escaneo de códigos de barras: empaquetar el modelo como parte de tu app o usar un modelo sin empaquetar que dependa de los Servicios de Google Play. Si seleccionas el modelo sin empaquetar, tu app será más pequeña. Consulta la siguiente tabla para obtener más detalles.

AtributoSin empaquetarRed de Búsqueda y Red de Display
ImplementaciónEl modelo se descarga de forma dinámica a través de los Servicios de Google Play.El modelo está vinculado estáticamente a tu aplicación en el momento de la compilación.
Tamaño de la appAumento de tamaño de aproximadamente 200 KB.Aumento de tamaño de aproximadamente 2.4 MB.
Hora de inicializaciónEs posible que deba esperar a que se descargue el modelo antes de usarlo por primera vez.El modelo está disponible de inmediato.

Antes de comenzar

  1. En el archivo build.gradle de nivel de proyecto, asegúrate de incluir el repositorio Maven de Google en las secciones buildscript y allprojects.

  2. Agrega las dependencias para las bibliotecas de Android del Kit de AA al archivo Gradle a nivel de la app del módulo, que suele ser app/build.gradle. Elige una de las siguientes dependencias según tus necesidades:

    Para empaquetar el modelo con tu app, haz lo siguiente:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.0.3'
    }
    

    Para usar el modelo en los Servicios de Google Play:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.1.0'
    }
    
  3. Si eliges usar el modelo en los Servicios de Google Play, puedes configurar la app para que, después de instalarla desde Play Store, descargue automáticamente el modelo al dispositivo. Para ello, agrega la siguiente declaración al archivo AndroidManifest.xml de tu app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    También puedes verificar de manera explícita la disponibilidad del modelo y solicitar su descarga a través de la API de ModuleInstallClient de los Servicios de Google Play.

    Si no habilitas las descargas del modelo en el momento de la instalación ni solicitas una descarga explícita, el modelo se descarga la primera vez que ejecutas el análisis. Las solicitudes que realices antes de que se complete la descarga no generan resultados.

Lineamientos para ingresar imágenes

  • Para que el Kit de AA lea códigos de barras con exactitud, las imágenes de entrada deben contener códigos de barras representados con datos de píxeles suficientes.

    Los requisitos específicos de datos de píxeles dependen del tipo de código de barras y de la cantidad de datos codificados, ya que muchos códigos de barras admiten una carga útil de tamaño variable. En general, la unidad más pequeña y significativa del código de barras debe tener al menos 2 píxeles de ancho, y en el caso de los códigos bidimensionales, debe tener 2 píxeles de alto.

    Por ejemplo, los códigos de barras EAN-13 están compuestos por barras y espacios de 1, 2, 3 o 4 unidades de ancho, por lo que una imagen de código de barras EAN-13 tiene, idealmente, barras y espacios de al menos 2, 4, 6 y 8 píxeles de ancho. Debido a que un código de barras EAN-13 tiene un ancho de 95 unidades en total, el código de barras debe tener al menos 190 píxeles de ancho.

    Los formatos más densos, como PDF417, necesitan mayores dimensiones de píxeles para que el Kit de AA pueda leerlos de manera confiable. Por ejemplo, un código PDF417 puede tener hasta 34 “palabras” de 17 unidades de ancho en una sola fila, que idealmente tendrá un ancho de 1156 píxeles.

  • Un enfoque de imagen deficiente puede afectar la exactitud del escaneo. Si tu app no obtiene resultados aceptables, pídele al usuario que vuelva a capturar la imagen.

  • Para aplicaciones típicas, se recomienda proporcionar una imagen de mayor resolución, como 1280 x 720 o 1920 x 1080, lo que hace que los códigos de barras se puedan escanear a una distancia mayor desde la cámara.

    Sin embargo, en las aplicaciones en las que la latencia es crítica, puedes mejorar el rendimiento si capturas imágenes con una resolución más baja, pero que requieren que el código de barras constituya la mayor parte de la imagen de entrada. Consulta también Sugerencias para mejorar el rendimiento en tiempo real.

1. Cómo configurar el escáner de código de barras

Si sabes qué formatos de códigos de barras leerás, puedes configurar el detector de códigos de barras para que solo detecte esos formatos a fin de mejorar su velocidad.

Por ejemplo, para detectar solo códigos QR y Aztec, crea un objeto BarcodeScannerOptions como el del siguiente ejemplo:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

Se admiten los siguientes formatos:

  • Código 128 (FORMAT_CODE_128)
  • Código 39 (FORMAT_CODE_39)
  • Código 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • TFT (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • Código QR (FORMAT_QR_CODE)
  • PDF 417 (FORMAT_PDF417)
  • Azteca (FORMAT_AZTEC)
  • Data Matrix (FORMAT_DATA_MATRIX)

2. Prepara la imagen de entrada

Para reconocer códigos de barras en una imagen, crea un objeto InputImage a partir de un Bitmap, una media.Image, un ByteBuffer, un array de bytes o un archivo ubicado en el dispositivo. Luego, pasa el objeto InputImage al método process de BarcodeScanner.

Puedes crear un objeto InputImage a partir de diferentes fuentes, que se explican a continuación.

Usa un media.Image

Para crear un objeto InputImage a partir de un objeto media.Image, como cuando capturas una imagen desde la cámara de un dispositivo, pasa el objeto media.Image y la rotación de la imagen a InputImage.fromMediaImage().

Si usas la biblioteca CameraX, las clases OnImageCapturedListener y ImageAnalysis.Analyzer calculan el valor de rotación por ti.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Si no usas una biblioteca de cámaras que te proporcione el grado de rotación de la imagen, puedes calcularla a partir del grado de rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Luego, pasa el objeto media.Image y el valor de grado de rotación a InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Usa un URI de archivo

Para crear un objeto InputImage a partir de un URI de archivo, pasa el contexto de la app y el URI de archivo a InputImage.fromFilePath(). Esto es útil cuando usas un intent ACTION_GET_CONTENT para solicitarle al usuario que seleccione una imagen de su app de galería.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Usa ByteBuffer o ByteArray

Para crear un objeto InputImage a partir de ByteBuffer o ByteArray, primero calcula el grado de rotación de la imagen como se describió anteriormente para la entrada media.Image. Luego, crea el objeto InputImage con el búfer o el array, junto con la altura, el ancho, el formato de codificación de color y el grado de rotación de la imagen:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Usa un Bitmap

Para crear un objeto InputImage a partir de un objeto Bitmap, realiza la siguiente declaración:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

La imagen se representa con un objeto Bitmap junto con los grados de rotación.

3. Obtener una instancia de BarcodeScanner

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. Procesa la imagen

Pasa la imagen al método process:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. Obtén información de códigos de barras

Si la operación de reconocimiento de códigos de barras se ejecuta correctamente, se pasará una lista de objetos Barcode al objeto de escucha que detecta el resultado correcto. Cada objeto Barcode representa un código de barras que se detectó en la imagen. Para cada código de barras, puedes obtener las coordenadas de sus límites en la imagen de entrada, así como los datos sin procesar codificados en el código de barras. Además, si el escáner de código de barras pudo determinar el tipo de datos codificados en el código de barras, puedes obtener un objeto que contenga los datos analizados.

Por ejemplo:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Sugerencias para mejorar el rendimiento en tiempo real

Si quieres escanear códigos de barras en una aplicación en tiempo real, sigue estos lineamientos para lograr la mejor velocidad de fotogramas por segundo:

  • No captures imágenes de entrada con la resolución nativa de la cámara. En algunos dispositivos, la captura de entrada con resolución nativa produce imágenes extremadamente grandes (más de 10 megapíxeles), lo que genera una latencia muy deficiente, sin que ello represente un beneficio para la exactitud. En cambio, solo debes solicitar a la cámara el tamaño requerido para la detección de códigos de barras, que no suele tener más de 2 megapíxeles.

    Si la velocidad de escaneo es importante, puedes reducir aún más la resolución de captura de imagen. Sin embargo, ten en cuenta los requisitos mínimos de tamaño de códigos de barras descritos anteriormente.

    Si intentas reconocer códigos de barras de una secuencia de transmisión de fotogramas de video, es posible que el reconocedor genere resultados diferentes de un fotograma a otro. Debes esperar hasta obtener una serie consecutiva del mismo valor para asegurarte de estar mostrando un buen resultado.

    El dígito de suma de verificación no es compatible con ITF ni con CODE-39.

  • Si usas las API de Camera o camera2, limita las llamadas al detector. Si hay un fotograma de video nuevo disponible mientras se ejecuta el detector, descarta el fotograma. Consulta la clase VisionProcessorBase de la app de muestra de inicio rápido para ver un ejemplo.
  • Si usas la API de CameraX, asegúrate de que la estrategia de contrapresión tenga el valor predeterminado ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Esto garantiza que solo se envíe una imagen a la vez para su análisis. Si se producen más imágenes cuando el analizador está ocupado, se descartarán automáticamente y no se agregarán a la cola para entregarlas. Una vez que la imagen que se analiza se cierra mediante una llamada a ImageProxy.close(), se entregará la siguiente imagen más reciente.
  • Si usas la salida del detector para superponer gráficos en la imagen de entrada, primero obtén el resultado del Kit de AA y, luego, procesa la imagen y la superposición en un solo paso. Esto se renderiza en la superficie de visualización solo una vez por cada marco de entrada. Consulta las clases CameraSourcePreview y GraphicOverlay en la app de muestra de inicio rápido para ver un ejemplo.
  • Si usas la API de Camera2, captura imágenes en formato ImageFormat.YUV_420_888. Si usas la API de Camera más antigua, captura imágenes en formato ImageFormat.NV21.