Compromis entre biais et variance, Wikipédia.
Brooks, S., Gelman, A., General Methods for Monitoring Convergence of Iterative Simulations, 1998.
Chen, A., Chan, D., Koehler, J., Wang, Y., Sun, Y., Jin, Y., Perry, M., Google, Inc. Bias Correction For Paid Search In Media Mix Modeling, 2018.
Clark, Michael. Bayesian Basics: A conceptual Introduction with application in R and Stan. University of Michigan. (2015-09-11).
Gelman, A., Rubin, D., Inference from Iterative Simulation Using Multiple Sequences, 1992.
Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
Jin, Y., Wang, Y., Sun, Y., Chan, D., Koehler, J., Google Inc. Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects 2017.
Ng, E., Wang, Z., & Dai, A. Bayesian Time Varying Coefficient Model with Applications to Marketing Mix Modeling, 2021.
Pearl, Judea. Causality. Cambridge University Press. (2009-09-14) ISBN 9781139643986.
Spline (mathematics), Wikipedia.
Sun, Y., Wang, Y., Jin, Y., Chan, D., Koehler, J., Google Inc. Geo-level Bayesian Hierarchical Media Mix Modeling 2017.
Wang, Y., Jin, Y., Sun, Y., Chan, D., Koehler, J., Google Inc. A Hierarchical Bayesian Approach to Improve Media Mix Models Using Category Data, 2017.
Zhang, Y., Wurm, M., Li, E., Wakim, A., Kelly, J., Price, B., Liu, Y., Google Inc. Media Mix Model Calibration With Bayesian Priors 2023.
Zhang, Y., Wurm, M., Wakim, A., Li, E., Liu, Y., Google Inc. Bayesian Hierarchical Media Mix Model Incorporating Reach and Frequency Data 2023.
Références
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/02/17 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Il n'y a pas l'information dont j'ai besoin","missingTheInformationINeed","thumb-down"],["Trop compliqué/Trop d'étapes","tooComplicatedTooManySteps","thumb-down"],["Obsolète","outOfDate","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Mauvais exemple/Erreur de code","samplesCodeIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/02/17 (UTC)."],[],["The documents cover Bayesian methods and their application in media mix modeling (MMM). Key topics include: bias-variance tradeoff; convergence monitoring for iterative simulations; causal inference; Bayesian hierarchical modeling to improve MMM with category data, reach, frequency, carryover, and shape effects; bias correction for paid search in MMM; and calibration of MMM using Bayesian priors. Splines and TensorFlow Probability are also mentioned, with general bayesian concepts. The work was carried out by researchers in different academic institutions or at google.\n"],null,[]]