Únete a la comunidad recientemente lanzada de
Discord para participar en debates en tiempo real, obtener asistencia de otros miembros y comunicarte directamente con el equipo de Meridian.
Suposiciones obligatorias
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En términos generales, no existe el concepto de resultados potenciales en la regresión porque los modelos de regresión estiman las expectativas condicionales de una variable de respuesta. Sin embargo, según los supuestos clave de intercambiabilidad condicional y coherencia:
$$
E \Biggl(
\overset \sim Y_{g,t}^{
\left(\left\{
x_{g,t,i}^{(\ast)}
\right\}\right)
} \Big| \bigl\{z_{g,t,i}\bigr\}
\Biggr) = E \Biggl(
\overset \sim Y_{g,t} \Big|
\bigl\{z_{g,t,i}\bigr\}, \big\{x_{g,t,i}^{(\ast)}\bigr\} \Biggr)
$$
Supuestos clave
Intercambiabilidad condicional:
\( \overset \sim Y_{g,t}^{(\{ x_{g,t,i}^{(\ast)} \})} \)
es independiente de las variables aleatorias
\(\bigl\{ X_{g,t,i}^{(\ast)} \bigr\}\) para cualquier situación contrafáctica
\(\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}\). Por lo tanto, el conjunto de resultados potenciales es condicionalmente independiente de la decisión de ejecución histórica de medios del anunciante.
Coherencia:
\( \overset \sim Y_{g,t} = \overset \sim Y_{g,t}^{
(\{ x_{g,t,i}^{(\ast)} \})
} \) cuando \(\bigl\{ X_{g,t,i}^{(\ast)} \bigr\} =
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}\). Así, la obtención del resultado potencial respecto del KPI observado para la situación contrafáctica coincide con la ejecución histórica de medios del anunciante.
Conforme a estos supuestos, obtienes el resultado indicado anteriormente:
$$
E \Biggl( \overset \sim Y_{g,t}^{
\left(\left\{ x_{g,t,i}^{\ast} \right\}\right)
} \Big| \bigl\{ z_{g,t,i} \bigr\} \Biggr)
\overset{\text{exchangeability}}{=} E \Biggl( \overset \sim Y_{g,t}^{
\left(\left\{ x_{g,t,i}^{\ast} \right\}\right)
} \Big| \bigl\{ z_{g,t,i} \bigr\},\ \bigl\{ x_{g,t,i}^{(\ast)} \bigr\} \Biggr)
\overset{\text{consistency}}{=} E \Biggl( \overset \sim Y_{g,t}\ \Big|
\bigl\{ z_{g,t,i} \bigr\},\ \bigl\{ x_{g,t,i}^{(\ast)} \bigr\}
\Biggr)
$$
El supuesto de coherencia es bastante intuitivo y conserva su validez, a menos que la situación contrafáctica esté definida de manera insuficiente o no esté representada con exactitud en los datos.
Para obtener más información, consulta Hernan MA, Robins JM, (2020) Causal Inference: What If.
El supuesto de intercambiabilidad condicional es un poco menos intuitivo. Además, es válido si se miden todas las variables de confusión y se incluyen en el array de control \(\{z_{g,t,i}\}\). Las variables de confusión son cualquier elemento que posee un efecto causal en el tratamiento observado \(\{x_{g,t,i}\}\) y en el resultado
\(\{\overset \sim y_{g,t}\}\). Un efecto causal en el tratamiento puede significar un efecto del nivel de presupuesto general del anunciante, la asignación en los diversos canales, la asignación en las diferentes ubicaciones geográficas o la asignación en los diferentes períodos. En la práctica, es difícil saber si se miden todas las variables de confusión, ya que es solo un supuesto y no hay ninguna prueba estadística para determinarlo a partir de tus datos. Sin embargo, puede resultar útil saber que el supuesto de intercambiabilidad condicional conserva su validez si supones un gráfico causal que cumple con una condición conocida como criterio de puerta trasera (Pearl, J., 2009). Para obtener más información, consulta Gráfico causal.
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-08-04 (UTC)
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-08-04 (UTC)"],[[["\u003cp\u003eRegression models can be used to estimate potential outcomes under the assumptions of conditional exchangeability and consistency.\u003c/p\u003e\n"],["\u003cp\u003eConditional exchangeability implies that potential outcomes are independent of historical media execution decisions, given confounding variables.\u003c/p\u003e\n"],["\u003cp\u003eConsistency means the observed outcome matches the potential outcome for the actual historical media execution.\u003c/p\u003e\n"],["\u003cp\u003eConfounding variables, which affect both treatment and outcome, must be measured and included for conditional exchangeability to hold.\u003c/p\u003e\n"],["\u003cp\u003eWhile there's no statistical test to guarantee conditional exchangeability, causal graphs and the backdoor criterion can help assess it.\u003c/p\u003e\n"]]],["Regression models typically lack potential outcomes, but under conditional exchangeability and consistency, we can derive a relevant result. Conditional exchangeability means potential outcomes are independent of historical media execution. Consistency dictates that observed outcomes match potential outcomes when treatment equals historical media execution. The key result is derived by first exchanging outcomes with potential outcomes, then aligning them with observed values under these assumptions. Conditional exchangeability relies on all confounders (variables affecting both treatment and outcome) being measured and can be assessed with causal graph analysis.\n"],null,["# Required assumptions\n\nGenerally speaking, there is no concept of potential outcomes in regression\nbecause regression models estimate conditional expectations of a response\nvariable. However, under the key assumptions of *conditional exchangeability*\nand *consistency*: \n$$ E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\^{ \\\\left(\\\\left\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\right\\\\}\\\\right) } \\\\Big\\| \\\\bigl\\\\{z_{g,t,i}\\\\bigr\\\\} \\\\Biggr) = E \\\\Biggl( \\\\overset \\\\sim Y_{g,t} \\\\Big\\| \\\\bigl\\\\{z_{g,t,i}\\\\bigr\\\\}, \\\\big\\\\{x_{g,t,i}\\^{(\\\\ast)}\\\\bigr\\\\} \\\\Biggr) $$\n\n**Key assumptions**\n\n- Conditional exchangeability:\n\n \\\\( \\\\overset \\\\sim Y_{g,t}\\^{(\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\})} \\\\)\n is independent of the random variables\n \\\\(\\\\bigl\\\\{ X_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\}\\\\) for any counterfactual scenario\n \\\\(\\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\}\\\\). So, the set of potential outcomes\n is conditionally independent of the advertiser's historical media execution\n decision.\n- Consistency:\n\n \\\\( \\\\overset \\\\sim Y_{g,t} = \\\\overset \\\\sim Y_{g,t}\\^{\n (\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\})\n } \\\\) when \\\\(\\\\bigl\\\\{ X_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\} =\n \\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\}\\\\). So, the observed KPI realization of\n the potential outcome for the counterfactual scenario matching the\n advertiser's historical media execution.\n\nUnder these assumptions, you have the previously stated result: \n$$ E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\^{ \\\\left(\\\\left\\\\{ x_{g,t,i}\\^{\\\\ast} \\\\right\\\\}\\\\right) } \\\\Big\\| \\\\bigl\\\\{ z_{g,t,i} \\\\bigr\\\\} \\\\Biggr) \\\\overset{\\\\text{exchangeability}}{=} E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\^{ \\\\left(\\\\left\\\\{ x_{g,t,i}\\^{\\\\ast} \\\\right\\\\}\\\\right) } \\\\Big\\| \\\\bigl\\\\{ z_{g,t,i} \\\\bigr\\\\},\\\\ \\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\} \\\\Biggr) \\\\overset{\\\\text{consistency}}{=} E \\\\Biggl( \\\\overset \\\\sim Y_{g,t}\\\\ \\\\Big\\| \\\\bigl\\\\{ z_{g,t,i} \\\\bigr\\\\},\\\\ \\\\bigl\\\\{ x_{g,t,i}\\^{(\\\\ast)} \\\\bigr\\\\} \\\\Biggr) $$\n\nThe consistency assumption is fairly intuitive, and holds unless the\ncounterfactual is poorly defined or is not accurately represented in the data.\nFor more information, see [Hernan MA, Robins JM, (2020) Causal Inference: What\nIf](https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/).\n\nThe conditional exchangeability assumption is a bit less intuitive. This\nassumption holds if all confounding variables are measured and included in the\ncontrol array \\\\(\\\\{z_{g,t,i}\\\\}\\\\). *Confounding variables* are anything that has\na causal effect on both the observed treatment \\\\(\\\\{x_{g,t,i}\\\\}\\\\) and outcome\n\\\\(\\\\{\\\\overset \\\\sim y_{g,t}\\\\}\\\\). A causal effect on treatment can mean an effect\nof the advertiser's overall budget level, the allocation across channels, the\nallocation across geos, or the allocation across time periods. In practice, it\nis difficult to know whether all of the confounding variables are measured\nbecause it is purely an assumption, and there is no statistical test to\ndetermine this from your data. However, it can be helpful to know that the\nconditional exchangeability assumption holds if you assume a causal graph that\nmeets a condition known as the *backdoor criterion* (Pearl, J., 2009). For more\ninformation, see [Causal graph](/meridian/docs/basics/causal-graph)."]]