Bias–variance tradeoff, Wikipedia.
Brooks, S., Gelman, A., General Methods for Monitoring Convergence of Iterative Simulations, 1998.
Chen, A., Chan, D., Koehler, J., Wang, Y., Sun, Y., Jin, Y., Perry, M., Google, Inc. Bias Correction For Paid Search In Media Mix Modeling, 2018.
Clark, Michael. Bayesian Basics: A conceptual Introduction with application in R and Stan. University of Michigan. (11/09/2015).
Gelman, A., Rubin, D., Inference from Iterative Simulation Using Multiple Sequences, 1992.
Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
Jin, Y., Wang, Y., Sun, Y., Chan, D., Koehler, J., Google Inc. Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects, 2017.
Ng, E., Wang, Z., & Dai, A. Bayesian Time Varying Coefficient Model with Applications to Marketing Mix Modeling, 2021.
Pearl, Judea. Causality. Cambridge University Press. (14/09/2009) ISBN 9781139643986.
Spline (mathematics), Wikipedia.
Sun, Y., Wang, Y., Jin, Y., Chan, D., Koehler, J., Google Inc. Geo-level Bayesian Hierarchical Media Mix Modeling, 2017.
Wang, Y., Jin, Y., Sun, Y., Chan, D., Koehler, J., Google Inc. A Hierarchical Bayesian Approach to Improve Media Mix Models Using Category Data, 2017.
Zhang, Y., Wurm, M., Li, E., Wakim, A., Kelly, J., Price, B., Liu, Y., Google Inc. Media Mix Model Calibration With Bayesian Priors, 2023.
Zhang, Y., Wurm, M., Wakim, A., Li, E., Liu, Y., Google Inc. Bayesian Hierarchical Media Mix Model Incorporating Reach and Frequency Data, 2023.
Referências
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-02-19 UTC.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-02-19 UTC."],[],["The documents cover Bayesian methods and their application in media mix modeling (MMM). Key topics include: bias-variance tradeoff; convergence monitoring for iterative simulations; causal inference; Bayesian hierarchical modeling to improve MMM with category data, reach, frequency, carryover, and shape effects; bias correction for paid search in MMM; and calibration of MMM using Bayesian priors. Splines and TensorFlow Probability are also mentioned, with general bayesian concepts. The work was carried out by researchers in different academic institutions or at google.\n"],null,[]]