Únete a la comunidad recientemente lanzada de
Discord para participar en debates en tiempo real, obtener asistencia de otros miembros y comunicarte directamente con el equipo de Meridian.
Saturación y retraso de los medios
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Por lo general, el efecto de un canal de medios en las ventas tiene un efecto rezagado que disminuye lentamente con el tiempo. La arquitectura del modelo de Meridian está diseñada para capturar este efecto a través de una función de Adstock de decaimiento geométrico. Para obtener más información, consulta A Hierarchical Bayesian Approach to Improve Media Mix Models Using Category Data (Un enfoque bayesiano jerárquico para mejorar los modelos de combinación de medios con datos de categorías) y Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects (Métodos bayesianos para el modelado de combinación de medios con efectos de transferencias y forma).
Función de Adstock
La función de Adstock se define de la siguiente manera:
$$
\text{AdStock}(x_t, x_{t-1}, \cdots, x_{t-L};\ \alpha)\ =
\dfrac{\sum\limits_{s=0}^L\ \alpha^sx_{t-s}}
{\sum\limits _{s=0}^L\ \alpha^s}
$$
Aquí ocurre lo siguiente:
\(x_s \geq 0; s = t, t-1, \cdots, t-L\)
\(\alpha\ \in\ [0, 1]\) es la tasa de decaimiento geométrico.
\(L\) es la duración máxima del rezago.
También es intuitivo que, a medida que aumenta la inversión en un canal de medios determinado durante un período determinado, con el tiempo, se observan retornos marginales decrecientes, por ejemplo, la saturación. Meridian modela este efecto de saturación a través de una función de dos parámetros conocida como función de Hill.
Función de Hill
La función de Hill se define de la siguiente manera:
$$
\text{Hill}(x; ec, \text{slope}) = \frac{1}{1+\left( \frac{x}{ec} \right)^
{- \text{slope}}}
$$
Aquí ocurre lo siguiente:
\(x \geq 0\)
\(ec > 0\) es el punto de la mitad de la saturación, lo que significa que\(\text{Hill}(x=ec; ec, \text{slope}) = 0.5\)
\(\text{slope} > 0\) es un parámetro que controla la forma de la función:
- \(\text{slope} \leq 1\) corresponde a una forma cóncava.
- \(\text{slope} > 1\) corresponde a una función en forma de S que es convexa para \( x < ec \) y cóncava para \( x > ec \).
Importante: La estimación del modelo de los parámetros de la función de Hill se basa en el rango observado de los datos de medios. La curva de respuesta ajustada se puede extrapolar fuera de este rango, pero los resultados basados en la extrapolación deben interpretarse con un nivel adecuado de precaución.
La función de Hill se puede aplicar antes o después de la transformación de Adstock, según el argumento booleano hill_before_adstock
de la ModelSpec
. La configuración predeterminada es hill_before_adstock = False
, lo que hace que el efecto de los medios del canal \(m\) en la ubicación geográfica \(g\) y el período \(t\)sea igual a\(\beta_{g,m} \text{Hill}(\text{Adstock}(x_t,x_{t-1},\cdots,x_{t-L};\ \alpha_m)
;ec_m, \text{slope}_m)\).
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-08-04 (UTC)
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-08-04 (UTC)"],[[["\u003cp\u003eMeridian utilizes an Adstock function to model the lagged and tapering effects of media channels on sales.\u003c/p\u003e\n"],["\u003cp\u003eThe Hill function is employed to capture the diminishing marginal returns, or saturation, of media spending.\u003c/p\u003e\n"],["\u003cp\u003eThe Hill function can be applied before or after the Adstock transformation, offering flexibility in modeling media effects.\u003c/p\u003e\n"],["\u003cp\u003eThe model estimates parameters based on observed data, and extrapolation beyond this range requires caution in interpretation.\u003c/p\u003e\n"],["\u003cp\u003eDetails on the Adstock and Hill functions, including formulas and parameter explanations, are provided within the content.\u003c/p\u003e\n"]]],["Meridian's model captures the lagged effect of media on sales using a geometric decay Adstock function, defined by decay rate (α) and maximum lag (L). It also accounts for diminishing returns through the Hill function, characterized by half saturation point (ec) and slope. The Hill function can be applied before or after the Adstock transformation, defaulting to after. The model estimates Hill function parameters based on the observed media data range.\n"],null,["The effects of media execution on KPI are governed by two mechanisms: a lagged\neffect and a saturation effect. Lagged effects refer to the way in which the\neffect of a media channel on KPI has a lagged effect that tapers off slowly\nover time. Saturation effects refer to diminishing marginal returns with\nincreased media execution.\n\nAdstock function\n\nMeridian's model architecture is designed to capture lagged effects\nthrough an Adstock function.\n\nIn the Adstock function, the cumulative media effect at time \\\\(t\\\\) is a\nweighted average of media execution at times \\\\(t, t-1, ..., t-L\\\\) with weights\ndetermined by a weight function \\\\(w(s; \\\\alpha)\\\\). Here, \\\\(L\\\\) is the maximum\nduration of the lagged effect.\n\nMeridian offers the Adstock function with two weight functions\n\\\\(w(s; \\\\alpha)\\\\): `geometric` and `binomial`. For more details on the\nfunctions, see [Set the adstock_decay_spec\nparameter](/meridian/docs/advanced-modeling/set-adstock-decay-spec-parameter).\nFor more information on the Adstock function, see [A Hierarchical Bayesian\nApproach to Improve Media Mix Models Using Category\nData](//research.google/pubs/a-hierarchical-bayesian-approach-to-improve-media-mix-models-using-category-data/)\nand [Bayesian Methods for Media Mix Modeling with Carryover and Shape\nEffects](//research.google/pubs/bayesian-methods-for-media-mix-modeling-with-carryover-and-shape-effects/).\n\nThe Adstock function is defined as follows: \n$$ \\\\text{Adstock}(x_t, x_{t-1}, \\\\cdots, x_{t-L};\\\\ \\\\alpha)\\\\ = \\\\dfrac{\\\\sum\\\\limits_{s=0}\\^L\\\\ w(s; \\\\alpha)x_{t-s}} {\\\\sum\\\\limits _{s=0}\\^L\\\\ w(s; \\\\alpha)} $$\n\nwhere:\n\n- \\\\(w(s; \\\\alpha) \\\\) is the [decay function](/meridian/docs/advanced-modeling/set-adstock-decay-spec-parameter)\n\n- \\\\(x_s \\\\geq 0\\\\) is media execution at time \\\\(s\\\\)\n\n- \\\\(\\\\alpha\\\\ \\\\in\\\\ \\[0, 1\\]\\\\) is the decay parameter\n\n- \\\\(L\\\\) is the maximum lag duration.\n\nHill function\n\nMeridian's model architecture is designed to capture saturation effects\nthrough a Hill function.\n\nIt is intuitive that as spending on a given media channel within any given\ntime period increases, you eventually see diminishing marginal returns, for\nexample, saturation. Meridian models this\nsaturation effect through a two-parameter function known as the Hill function.\n\nThe Hill function is defined as follows: \n$$ \\\\text{Hill}(x; ec, \\\\text{slope}) = \\\\frac{1}{1+\\\\left( \\\\frac{x}{ec} \\\\right)\\^ {- \\\\text{slope}}} $$\n\nwhere:\n\n- \\\\(x \\\\geq 0\\\\)\n\n- \\\\(ec \\\u003e 0\\\\) is the half saturation point, meaning that \\\\(\\\\text{Hill}(x=ec;\n ec, \\\\text{slope}) = 0.5\\\\)\n\n- \\\\(\\\\text{slope} \\\u003e 0\\\\) is a parameter that controls the function shape:\n\n - \\\\(\\\\text{slope} \\\\leq 1\\\\) corresponds to a concave shape\n - \\\\(\\\\text{slope} \\\u003e 1\\\\) corresponds to an *S* shaped function that is convex for \\\\( x \\\u003c ec \\\\) and concave for \\\\( x \\\u003e ec \\\\).\n\n**Important:** The model's estimation of the Hill function parameters is based\non the observed range of media data. The fitted response curve can be\nextrapolated outside this range, but results based on extrapolation should be\ninterpreted with an appropriate level of caution.\n\nThe Hill function can be applied either before or after the Adstock\ntransformation, depending on the boolean `hill_before_adstock` argument of the\n`ModelSpec`. The default setting is `hill_before_adstock = False`, which makes\nthe media effect of channel \\\\(m\\\\) within geo \\\\(g\\\\) and time period \\\\(t\\\\)\nequal to \\\\(\\\\beta_{g,m} \\\\text{Hill}(\\\\text{Adstock}(x_t,x_{t-1},\\\\cdots,x_{t-L};\\\\\n\\\\alpha_m) ;ec_m, \\\\text{slope}_m)\\\\)."]]