science Produk atau fitur ini ada dalam Pratinjau (pra-GA). Produk dan fitur pra-GA mungkin memiliki dukungan terbatas, dan perubahan pada produk serta fitur pra-GA mungkin tidak kompatibel dengan versi pra-GA lainnya. Penawaran Pra-GA tercakup dalam Persyaratan Khusus Layanan Google Maps Platform. Untuk mengetahui informasi selengkapnya, lihat deskripsi tahap peluncuran. Daftar untuk menguji Places Insights.
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Analisis Tempat memberikan informasi merek untuk banyak kategori tempat. Contoh:
Untuk kategori "ATM, Bank, dan Koperasi", data merek
berisi entri untuk setiap merek bank PNC, UBS, dan Chase.
Untuk kategori "Rental Otomotif", data berisi entri untuk setiap merek Budget, Hertz, dan Thrifty.
Kasus penggunaan umum untuk membuat kueri set data merek adalah menggabungkannya dengan kueri pada data tempat untuk menjawab pertanyaan seperti:
Berapa jumlah semua toko menurut merek di suatu area?
Berapa jumlah merek tiga pesaing teratas saya di area tersebut?
Berapa jumlah merek dalam kategori tertentu, seperti "Kebugaran" atau
"SPBU", di area tersebut?
Tentang set data merek
Set data merek untuk Amerika Serikat diberi nama places_insights___us___sample.brands.
Skema set data merek
Skema untuk set data merek menentukan tiga kolom:
id: ID merek.
name: Nama merek, seperti "Hertz" atau "Chase".
category: Jenis merek, seperti "SPBU", "Makanan dan Minuman", atau
"Penginapan". Untuk mengetahui daftar kemungkinan nilai, lihat Nilai kategori
Menggunakan set data merek dalam kueri
Skema set data tempat menentukan kolom brand_ids. Jika tempat dalam set data tempat dikaitkan dengan merek, kolom brand_ids untuk tempat tersebut berisi ID merek yang sesuai.
Kueri umum yang mereferensikan set data merek melakukan JOIN dengan
set data tempat berdasarkan kolom brand_ids.
Misalnya, untuk menemukan jumlah restoran McDonald's dalam jarak 2.000 meter dari Empire State Building di New York City:
Kueri berikutnya menampilkan jumlah kafe di New York City yang
termasuk dalam suatu merek, yang dikelompokkan menurut nama merek:
SELECTWITHAGGREGATION_THRESHOLDbrands.name,COUNT(*)ASstore_countFROMPROJECT_NAME.places_insights___us___sample.places_sampleplaces,UNNEST(brand_ids)ASbrand_idLEFTJOINPROJECT_NAME.places_insights___us___sample.brandsONbrand_id=brands.idWHEREbrands.category="Food and Drink"AND"cafe"INUNNEST(places.types)ANDbusiness_status="OPERATIONAL"GROUPBYbrands.nameORDERBYstore_countDESC;
Gambar berikut menunjukkan jumlah menurut merek:
Nilai kategori
Kolom category untuk merek dapat berisi nilai berikut:
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-09-06 UTC."],[],[],null,["| **Note:** For the Preview release, the brands dataset is only available for New York City in the United States.\n\nPlaces Insights provides brand information for many categories of places. For\nexample:\n\n- For the category of \"ATMs, Banks, and Credit Unions\", the brands data contains an entry for each of the brands PNC, UBS, and Chase banks.\n- For the category \"Automotive Rentals\", the data contains an entry for each of the brands Budget, Hertz, and Thrifty.\n\nA typical use case for querying the brands dataset is to join it with a query on\nthe place data to answer questions such as:\n\n- What is the count of all stores by brand in an area?\n- What is the count of my top three competitor brands in the area?\n- What is the count of brands of a specific category, such as \"Fitness\" or \"Gas Station\", in the area?\n\nAbout the brands dataset\n\nThe brands dataset for the US is named `places_insights___us___sample.brands`.\n\nBrands dataset schema\n\nThe schema for the brands dataset defines three fields:\n\n- `id`: The brand ID.\n- `name`: The brand name, such as \"Hertz\" or \"Chase\".\n- `category`: The brand type, such as \"Gas Station\", \"Food and Drink\", or \"Lodging\". For a list of possible values, see [Category\n values](#category-values)\n\nUse brands dataset in a query\n\nThe **places dataset** schema defines the `brand_ids` field. If a place in the\nplaces dataset is associated with a brand, then the `brand_ids` field for the\nplace contains the corresponding brand ID.\n\nA typical query that references the **brands dataset** performs a `JOIN` with\nthe **places dataset** based on the `brand_ids` field.\n\nFor example, to find the count of the number of McDonald's restaurants within\n2000 meters of the Empire State Building in New York City: \n\n```googlesql\nSELECT WITH AGGREGATION_THRESHOLD\n COUNT(*)\nFROM places_insights___us___sample.places_sample places, UNNEST(brand_ids) AS brand_id\nLEFT JOIN places_insights___us___sample.brands ON brand_id = brands.id\nWHERE\nST_DWITHIN(ST_GEOGPOINT(-73.9857, 40.7484), point, 2000)\nAND brands.name = \"McDonald's\"\nAND business_status = \"OPERATIONAL\"\n```\n\nThe next query returns the count of the number of cafes in New York City that\nbelong to a brand, grouped by brand name: \n\n```googlesql\nSELECT WITH AGGREGATION_THRESHOLD\n brands.name,\n COUNT(*) AS store_count\nFROM places_insights___us___sample.places_sample places, UNNEST(brand_ids) AS brand_id\nLEFT JOIN places_insights___us___sample.brands ON brand_id = brands.id\nWHERE brands.category = \"Food and Drink\"\nAND \"cafe\" IN UNNEST(places.types)\nAND business_status = \"OPERATIONAL\"\nGROUP BY brands.name\nORDER BY store_count DESC;\n```\n\nThe following image shows the counts by brand:\n\nCategory values\n\nThe `category` field for a brand can contain the following values:\n\n| Category type value |\n|--------------------------------------|\n| `ATMs, Banks and Credit Unions` |\n| `Automotive and Parts Dealers` |\n| `Automotive Rentals` |\n| `Automotive Services` |\n| `Dental` |\n| `Electric Vehicle Charging Stations` |\n| `Electronics Retailers` |\n| `Fitness` |\n| `Food and Drink` |\n| `Gas Station` |\n| `Grocery and Liquor` |\n| `Health and Personal Care Retailers` |\n| `Hospital` |\n| `Lodging` |\n| `Merchandise Retail` |\n| `Movie Theater` |\n| `Parking` |\n| `Telecommunications` |"]]